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Abstract

Constant technology advances have caused data explosion in recent years. Accord-

ingly modern statistical and machine learning methods must be adapted to deal with

complex and heterogeneous data types. This phenomenon is particularly true for an-

alyzing biological data. For example DNA sequence data can be viewed as categorical

variables with each nucleotide taking four di↵erent categories. The gene expression

data, depending on the quantitative technology, could be continuous numbers or

counts. With the advancement of high-throughput technology, the abundance of

such data becomes unprecedentedly rich. Therefore e�cient statistical approaches

are crucial in this big data era.

Previous statistical methods for big data often aim to find low dimensional struc-

tures in the observed data. For example in a factor analysis model a latent Gaussian

distributed multivariate vector is assumed. With this assumption a factor model

produces a low rank estimation of the covariance of the observed variables. Another

example is the latent Dirichlet allocation model for documents. The mixture pro-

portions of topics, represented by a Dirichlet distributed variable, is assumed. This

dissertation proposes several novel extensions to the previous statistical methods that

are developed to address challenges in big data. Those novel methods are applied

in multiple real world applications including construction of condition specific gene

co-expression networks, estimating shared topics among newsgroups, analysis of pro-

moter sequences, analysis of political-economics risk data and estimating population
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structure from genotype data.
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1

Introduction

Constant technology advances have induced data explosion in recent years. This phe-

nomenon is particularly pronounced in biology. Such a big data era comes with the

strong needs of e�cient and scalable statistical approaches to extract useful informa-

tion from massive data sets. This dissertation addresses several important practical

problems by developing theoretically supported and computationally e�cient mod-

els. The practical potential of the developed models are demonstrated by real world

applications.

Chapter 2 will develop a new Bayesian factor model for multiple coupled obser-

vations. This model is named BASS. BASS is motivated by the fact that in real

world applications, people often encounter paired or multiple coupled observations.

For example expression profiles of a number of genes for a particular individual are

measured under di↵erent conditions. Researchers are particularly interested in the

covariance specific to each observation as well as the covariance among di↵erent

combinations of observations. Built on the latest innovations in Bayesian shrink-

age priors, a structured prior that combines element-wise sparsity with column-wise

sparsity on the factor loading matrix is developed. In addition the prior allows
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mixture of sparse and dense columns in the loading, generating sparse + low rank

decompositions of the covariance matrix. To e�ciently perform maximum a posteri-

ori (MAP) parameter estimation, a parameter expanded expectation maximization

(PX-EM) algorithm is proposed. The PX-EM algorithm introduces an additional ro-

tation parameter into the factor model. The additional rotation parameter connects

posterior modes in the original space by equal likelihood curves in the expanded

space, therefore it facilitates e�cient posterior mode search. The performance of

BASS is evaluated by comparisons with other existing methods through simulation

studies. Results suggest BASS achieves best parameter estimation and prediction

accuracy in most cases. In the end BASS is applied to real data sets with the aim of

multivariate response prediction, constructing condition specific gene co-expression

networks and inferring topics that are shared by di↵erent newsgroups.

Chapter 3 will propose a new model, called generalized latent Dirichlet variable

model. Such a model assumes each multivariate observation partially belongs to k

latent components. Moreover di↵erent coordinates of the observation could take dif-

ferent distributions. Previous parameter estimation methods for such a model have

relied on EM or Markov chain Monte Carlo (MCMC) algorithms with initiations of

latent variables. To perform parameter estimation e�ciently a generalized methods

of moment (GMM) approach is developed to estimate component parameters of the

model. The new approach does not require initiations of latent variables. This is

achieved by constructing moment functions from second and third order cross mo-

ments among variables. The moment functions have expectation of zero at true

values of parameters. By minimizing quadratic forms of the moment functions pa-

rameters could be estimated using a coordinate descent algorithm. Using GMM

theories the asymptotic properties and e�ciency of the estimator are shown. We

name the new approach MELD. MELD is orders of magnitude faster than alterna-

tive estimation methods such as EM or MCMC algorithms, and at the same time it
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achieves higher estimation accuracy. The performance of MELD is evaluated by com-

parisons with competing methods through simulation studies. To demonstrate the

utility of MELD in real world applications we apply it to public available data sets

including a promoter sequence data, a political-economic risk data and a genotype

+ gene expression data in human HapMap phase 3 data set.

Chapter 4 will develop a sampling method for distributions on Riemannian man-

ifolds. One example of such distributions is the Bingham-von Mises-Fisher (BMF)

distribution. The distribution is defined on the Stiefel manifold consisting of p ˆ k

orthonormal matrices. This distribution has been frequently encountered in prob-

lems such as orthogonal factor analysis and probabilistic singular value decompo-

sition (SVD). Motivated by those problems, an e�cient Monte Carlo method that

could draw samples from those distributions is developed. The method combines the

Hamiltonian Monte Carlo (HMC) algorithm with a geodesic integrator. The utility

of the new method is demonstrated in two applications.

Chapter 5 will give a concluding remark.
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2

BASS - a scalable Bayesian group factor analysis

model for structured latent space learning

Linear dimension reduction techniques play a very important role in modern data

analysis. The basic idea of linear dimension reduction is to find a lower dimensional

latent space that useful information in the original space can be kept. Examples

of such techniques include principal component analysis (PCA) (Hotelling, 1933),

factor analysis (FA) (Spearman, 1904) and canonical correlation analysis (CCA)

(Hotelling, 1936). A comprehensive and elegant review can be found in (Cunningham

and Ghahramani, 2014). In this chapter we investigate a new FA model called group

factor analysis (GFA) model which can combinatorially model multiple data sets

and can learn a latent space that is structured in a desirable way. This is achieved

from the latest developments in Bayesian literature using sparsity inducing priors.

The rest of this chapter is organized as follows. We introduce GFA in Section 2.1.

In Section 2.2 we review recent strategies, mainly from Bayesian point of view, to

structure the latent space. We also give a brief review about recent innovations in

Bayesian shrinkage priors. In Section 2.3 we combine GFA with a particular Bayesian
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shrinkage prior and develop a new Bayesian GFA model. The new model is called

BASS standing for Bayesian group Analysis with Structured Sparsity. In Section

2.4 we propose a fast and accurate parameter estimation method with parameter

expansion. Simulations and applications are demonstrated in Section 2.5 and 2.6

respectively. We conclude this chapter by a discussion in Section 2.7.

2.1 Group factor analysis

2.1.1 Factor analysis

Before we come to the group factor analysis model, we first introduce factor analysis.

A FA model finds a low dimensional latent variable x
i

P Rkˆ1 from a high dimensional

observation y

i

P Rpˆ1 for subject i with i “ 1, . . . , n. Usually it is assumed the

dimension of y
i

is larger than the dimension of x
i

. A sample in the low dimensional

space is linearly projected to the original high dimensional space through a loading

matrix ⇤ P Rpˆk. The observation y

i

is assumed to be a noisy version of the

projection, with the noise denoted as ✏
i

P Rpˆ1. Formally the factor model could be

written as

y

i

“ ⇤x
i

` ✏

i

, (2.1)

for i “ 1, . . . , n. In a standard FA model, x
i

is assumed to follow a N
k

p0, Iq distri-

bution and ✏

i

„ N
p

p0,⌃q, where ⌃ is a pˆ p diagonal covariance matrix with �2
j

for

j “ 1, . . . , p on the diagonal. We have assumed the y

i

is centered in this case. The

model can be easily extended to non-centered case where we first provide a sample

estimate of the mean and then subtract the mean from y

i

. The resulting centered

observations could be modeled by (2.1). Integrating over the factor x

i

, the model

produces a low-rank (in the sense of the loading matrix) estimation of the covariance

matrix of y
i

⌦ “ ⇤⇤J
`⌃ “

k

ÿ

h“1

�¨h�
J
¨h `⌃, (2.2)
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where �¨h is the hth column of ⇤. This factorization suggests that each factor sep-

arately contributes to the covariance of the observation through its corresponding

loading. Traditional exploratory data analysis methods such as principle component

analysis (PCA) (Hotelling, 1933), independent component analysis (ICA) (Comon,

1994), and canonical correlation analysis (CCA) (Hotelling, 1936) all have interpre-

tations as a FA model.

The parameter estimation in FA is usually conducted using expectation max-

imization (EM) (Dempster et al., 1977) or Markov chain Monte Carlo (MCMC)

algorithms. In either way all the information for parameter estimation is coming

from the sample covariance matrix

S “

1

n

n

ÿ

i“1

y

i

y

J
i

.

This result in fact reflects that S is the su�cient statistic for ⌦. In the n † p case,

it is important to include regularization on the covariance matrix estimation due

to sample covariance is singular. In the context of FA, this can be transferred to

assigning regularization on the loading matrix, generating sparse structures in ⇤.

For example, element-wise sparsity in the loading corresponds to variable selection.

This achieves the e↵ect that a latent factor contributes to the variation of a subset of

the observed variables, generating interpretable results (West, 2003; Carvalho et al.,

2008; Knowles and Ghahramani, 2011). For example, in gene expression analysis,

sparse factor loadings are interpreted as clusters of genes and are used to identify

sets of co-regulated genes (Pournara and Wernisch, 2007; Lucas et al., 2010; Gao

et al., 2013).

2.1.2 Extension to paired vectors

Factor model (2.1) provides a covariance estimation for single random vector y

i

.

However in real world applications there are common cases that paired random vec-
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tors or coupled multiple vectors are observed. Let yp1q
i

, . . .ypmq
i

denote the m coupled

vectors for the ith subject. For example, consider the case where gene expression

profiles under m di↵erent conditions are measured. Each condition characterizes a

n repeated measurements of a random vector, and researchers are interested in the

covariance specific to each condition as well as the covariance among di↵erent combi-

nations of conditions. Another example is that m di↵erent sections of n documents

are observed. We let the matrix Y

pvq
“ py

pvq
1 , . . . ,ypvq

n

q denote the n independent

subjects under condition v with v “ 1, . . . ,m. Y pvq is known as a view.

When m “ 2, canonical correlation analysis (CCA) identifies a linear latent

space and projections (canonical directions) for which the correlations between the

two views are mutually maximized (Hotelling, 1936). CCA has a probabilistic inter-

pretation as a factor model by assuming a common latent factor x
i

P Rkˆ1 for both

y

p1q
i

and y

p2q
i

(Bach and Jordan, 2005)

y

p1q
i

“ ⇤p1q
x

i

` e

p1q
i

,

y

p2q
i

“ ⇤p2q
x

i

` e

p2q
i

. (2.3)

The errors are distributed as ep1q
i

„ N
p1p0, p1q

q and e

p2q
i

„ N
p2p0, p2q

q, where  p1q

and  p2q are positive semi-definite matrices. The model does not restrict  p1q and

 p2q to be diagonal, allowing dependencies among residual errors within a view. The

maximum likelihood estimators of the loading matrices, ⇤p1q and ⇤p2q, are the first

k canonical directions up to linear transformations (Bach and Jordan, 2005).

Building on the probabilistic CCA model, a Bayesian CCA (BCCA) model is

proposed by Klami et al. (2013). BCCA model assumes

y

p1q
i

“ A

p1q
x

p0q
i

` B

p1q
x

p1q
i

` ✏

p1q
i

,

y

p2q
i

“ A

p2q
x

p0q
i

` B

p2q
x

p2q
i

` ✏

p2q
i

, (2.4)

with x

p0q
i

P Rk0ˆ1, xp1q
i

P Rk1ˆ1 and x

p2q
i

P Rk2ˆ1 (Figure 2.1B). The latent vector
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Figure 2.1: Graphical representations of di↵erent latent factor models. Panel
A: Factor analysis model. Panel B: Bayesian canonical correlation analysis model
(BCCA). Panel C: An extension of BCCA model to multiple views. Panel D:
Bayesian group factor analysis model studied in current chapter.

x

p0q
i

is shared by both y

p1q
i

and y

p2q
i

, and it captures their common variation through

loading matrices A

p1q and A

p2q. Two additional latent vectors, xp1q
i

and x

p2q
i

, are

specific to each view; they are multiplied by view specific loading matrices B

p1q

and B

p2q respectively. The two residual error terms are ✏

p1q
i

„ N
p1p0,⌃p1q

q and

✏

p2q
i

„ N
p2p0,⌃p2q

q, where ⌃p1q and ⌃p2q are two diagonal matrices. This model was

originally called inter-battery factor analysis (IBFA) (Browne, 1979) and recently has

been studied under a full Bayesian inference framework (Klami et al., 2013). It can be

viewed as a probabilistic CCA model (2.3) with an additional low rank factorization

of the error covariance matrices. In fact, we re-write the residual error term specific

to view v (v “ 1, 2) from the probabilistic CCA model (2.3) as epvq
i

“ B

pvq
x

pvq
i

` ✏

pvq
i

,

then marginally e

pvq
i

„ N
pvp0, pvq

q with  pvq
“ B

pvq
pB

pvq
q

J
`⌃pvq.

Klami et al. (2013) re-write (2.4) as a factor analysis model with group-wise

sparsity in the loading matrix. Let y

i

P Rpˆ1 with p “ p1 ` p2 be the vertical
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concatenation of y

p1q
i

and y

p2q
i

; let x

i

P Rkˆ1 with k “ k0 ` k1 ` k2 be vertical

concatenation of xp0q
i

, xp1q
i

and x

p2q
i

; and let ✏

i

P Rpˆ1 be vertical concatenation of

the two residual errors. Then, the BCCA model in (2.4) can be written as a factor

analysis model

y

i

“ ⇤x
i

` ✏

i

,

with ✏

i

„ N
p

p0,⌃q, where

⇤ “

ˆ

A

p1q
B

p1q 0
A

p2q 0 B

p2q

˙

,⌃ “

ˆ

⌃p1q 0
0 ⌃p2q

˙

. (2.5)

The structure in the loading matrix ⇤ has a specific meaning. The non-zero columns

(those in A

p1q and A

p2q) project the shared latent factors (i.e., the first k0 in x

i

) to

y

p1q
i

and y

p2q
i

respectively. These latent factors represent the covariance across the

two views. The columns with zero blocks (those in pB

p1q;0q or p0;Bp2q
q) relate rest

factors to only one of the two views. Those factors are used to model covariance

specific to one view. Under this model, the structure of ⇤ could be fixed a priori,

and the inference problem is to estimate the entries in the non-zero blocks of ⇤.

2.1.3 Multiple coupled vectors

The extensions of the BCCA/IBFA model to allow multiple views (m ° 2) have

been developed recently. Examples include McDonald (1970); Browne (1980); Ar-

chambeau and Bach (2009); Qu and Chen (2011); Ray et al. (2014). Those extensions

partition latent variables to shared and view specific ones through following equation

y

pvq
i

“ A

pvq
x

p0q
i

` B

pvq
x

pvq
i

` ✏

pvq
i

for v “ 1, ¨ ¨ ¨ ,m. (2.6)

By vertical concatenation of ypvq
i

, xpvq
i

and ✏

pvq
i

, this model can be viewed as a latent

factor model with the joint loading matrix ⇤ having a group-wise sparsity pattern

9



similar as in the BCCA/IBFA model

⇤ “

¨

˚

˚

˚

˝

A

p1q
B

p1q
¨ ¨ ¨ 0

A

p2q 0 ¨ ¨ ¨ 0
...

...
. . .

...
A

pmq 0 ¨ ¨ ¨ B

pmq

˛

‹

‹

‹

‚

. (2.7)

Here, the first column of blocks (Apvq) is a non-zero loading matrix across all views,

and the remaining columns have a block diagonal structure with view-specific loading

matrices (Bpvq) on the diagonal. However, those extensions are limited by the strict

diagonal structure of the loading matrix. Structuring the loading matrix in this

way prevents the model from capturing covariance among arbitrary combinations of

views.

The structure of ⇤ in (2.7) has been relaxed to model covariance among combi-

nations of views (Jia et al., 2010; Virtanen et al., 2012; Klami et al., 2014a). In the

relaxed formulation, each view y

pvq
i

is modeled by its own loading matrix ⇤pvq and a

latent vector x
i

, and this latent vector x
i

is shared by all views (Figure 2.1D)

y

pvq
i

“ ⇤pvq
x

i

` ✏

pvq
i

for v “ 1, . . . ,m. (2.8)

By allowing columns in ⇤pvq to be zero, the model decouples certain latent factors

from certain views, achieving view selection. The covariance structure of an arbitrary

combination of views is modeled by factors with non-zero loadings corresponding to

the views in that combination. Factors that correspond to non-zero entries for only

one view capture covariance specific to that view. The model in (2.8) is named group

factor analysis (GFA) model (Virtanen et al., 2012).

2.2 Structures in the loading

The loading matrix ⇤ plays an important role in previous FA models and their ex-

tensions. As mentioned before, element-wise sparsity in loadings achieves variable
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selection and generates interpretable results. When dealing with multiple views,

group-wise sparsity decouples views from latent factors, achieving view selection.

Imposing di↵erent levels of sparsity has been investigated through di↵erent strate-

gies under various contexts, both using classical penalization or Bayesian shrinkage

priors. For classical penalization, the elastic net (Zou and Hastie, 2005) and group

Lasso (Yuan and Lin, 2006) penalties have been featured in regression models. Mixed

matrix norms with `1 norm penalizing each column and either `2 or `8 norms penaliz-

ing the elements have been used in GFA context (Jia et al., 2010). More sophisticated

structured penalties have been studied. Examples include Kowalski and Torrésani

(2009), Jenatton et al. (2011) and Huang et al. (2011) among others. In this thesis

we focus on the approach using Bayesian methods.

2.2.1 Spike and slab prior in factor analysis

A classic Bayesian approach to variable selection is to develop a two-component

mixture prior, termed spike-and-slab prior, for the variables of interests (Mitchell

and Beauchamp, 1988; West, 2003; Carvalho et al., 2008). The spike component

corresponds to a probability mass at zero, and the slab component corresponds to a

relatively di↵use prior on the parameter space. The spike component also has been

formulated as a normal with a small variance. See George and McCulloch (1993) and

Ročková and George (2014) for example. This prior has an elegant interpretability

by estimating the probability that certain variables are excluded, modeled by the

spike component or included, modeled by the slab component.

In the FA context, West (2003) develops a spike-and-slab prior on every element

of the loading matrix, with mixture weight being shared cross the loading. Let �
jh

denote the entry of jth row and hth column in the loading matrix ⇤, the prior

assumes

�
jh

|⇡
h

, ⌧
h

„ p1 ´ ⇡
h

q�0p¨q ` ⇡
h

Np0, ⌧
h

q. (2.9)

11



When p is large, we hope this prior could generate a large amount of zeros in the hth

loading, therefore the hyper-prior of ⇡
h

should have substantial mass around zero.

Lucas et al. (2006) and Carvalho et al. (2008) extend this idea to allow each loading

element has its own mixture weight, and the mixture weights in a loading is assumed

to share a common population beta distribution

�
jh

|⇡
jh

, ⌧
h

„ p1 ´ ⇡
jh

q�0p¨q ` ⇡
jh

Np0, ⌧
h

q. (2.10)

Allowing each loading entry to have its own mixture weight ⇡
jh

could overcome some

limitations of the prior in equation (2.9): The strong informative prior assigned to

⇡
h

in equation (2.9) could lead the posterior of �
jh

being zero to be di↵use across the

unit interval, therefore generating a large variance (Carvalho et al., 2008). Allowing

�
jh

to have its own mixture weight overcomes this limitation. It is possible that the

entry specific weight ⇡
jh

Ñ 0, e↵ectively setting �
jh

to zero. This new prior controls

the sparsity level of a loading and allows elements to borrow information within a

loading. This idea is quite related to our GFA model in Section 2.3. Moreover, non-

parametric methods like Indian bu↵et process (IBP) have been used to model the

inclusion/exclusion of loading elements (Knowles and Ghahramani, 2011). Using

nonparametric methods generates a conceptually infinite number of latent factors

which allows the model itself to determine the dimension of latent space. However

parameter estimations in those approaches often rely on Gibbs sampling methods

which construct a Markov chain that performs stochastic search in an exponentially

increasing configuration space (George and McCulloch, 1993). Recently an EM algo-

rithm has been proposed to find posterior modes under the specification of the spike

component being a tight normal in a linear regression model (Ročková and George,

2014). The approach allows fast parameter estimation and variable selection can be

generated by posterior thresholding rules.
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2.2.2 Continuous shrinkage priors

Recently, scale mixtures of normal priors have been proposed as a computationally

e�cient alternative to the two component spike-and-slab prior (West, 1987; Carvalho

et al., 2010; Polson and Scott, 2011; Armagan et al., 2011, 2013; Bhattacharya et al.,

2015). A prior of such kind generally assumes a normal distribution with a mixed

variance term. The mixing distribution of the variance determines the behavior of

the prior. In some sense those priors could be viewed as extending the previous

two components mixture to an infinite mixture of normals. Marginalizing over the

variance, we would expect such priors have substantial probability mass around zero,

which pushes small e↵ects toward zero, and heavy tails, which allow large signals to

escape from substantial shrinkage. For example, the inverse-gamma distribution on

the variance term results in an automatic relevance determination (ARD) prior (Tip-

ping, 2001). An exponential distribution on the variance term results in a Laplace

prior (Park and Casella, 2008). The horseshoe prior, with a half Cauchy distribution

on the standard deviation as the mixing distribution, has become popular due to its

strong shrinkage around the origin and heavy tails (Carvalho et al., 2010). More

general classes of priors including generalized beta mixtures of normals and double

Pareto priors have been developed recently (Armagan et al., 2011, 2013). See Table

2.1 for a brief summary. More details can be found in the corresponding references.

These various continuous shrinkage priors provide a one group answer to the original

two groups question (Polson and Scott, 2011). Although such an answer can not

provide an estimation of variable inclusion probability, it has many intriguing ad-

vantages as discussed by various researchers. See Polson and Scott (2011), Carvalho

et al. (2010) and Bhattacharya et al. (2015) among others. For example, maximum

a posteriori (MAP) estimator could provide exact zeros in the variables of inter-

est, and continuous priors avoid to construct a Markov chain that has exponentially
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Table 2.1: A brief summary of Bayesian shrinkage priors. More details can be found
in Polson and Scott (2011) and references therein.

Name Prior for ✓
j

Mixing density

ARD ✓
j

|⌧
j

„ Np0, ⌧
j

q ⌧´1
j

„ Gapa, bq, small a and b

Laplace ✓
j

|⌧
j

„ Np0, ⌧
j

q ⌧
j

„ Expp�2
{2q

Strawderman
-Berger

✓
j

|⇢
j

„ Np0, ⇢´1
j

´ 1q ⇢
j

„ Bep1{2, 1q

Horseshoe
✓
j

|⌧
j

„ Np0, ⌧
j

q

✓
j

|⇢
j

„ Np0, ⇢´1
j

´ 1q

✓
j

|⌧
j

„ Np0, ⌧
j

q

⌧ 1{2
j

„ C`
p0,�1{2

q, � “ 1, standard

⇢
j

„ ⇢1{2
j

p1 ´ ⇢
j

q

1{2 1
1`p�´1q⇢j

⌧
j

„ Gap1{2,�
j

q, �
j

„ Gap1{2,�q

Generalized
double Pareto

✓
j

„ 1{p2⇠qp1 ` |⌧
j

|{↵⇠q

´p↵`1q

✓
j

|⌧
j

„ Np0, ⌧
j

q

-
⌧
j

„ Expp�2
j

{2q,�
j

„ Gapa, ⌘q

increasing number of parameter configurations.

In the FA context, Bhattacharya and Dunson (2011) propose an infinite factor

model using a multiplicative gamma process shrinkage prior on the loading matrix.

The variance of the loading element is composed by a product of a global shrinkage

parameter specified for each loading and a local shrinkage parameter for that element.

This structure is similar to the global/local shrinkage discussed in linear regression

contexts (Polson and Scott, 2011) and is conceptually related to the spike-and-slab

prior developed by Carvalho et al. (2008) in terms of allowing loading element to

have its own shrinkage parameter. One distinct feature of the multiplicative gamma

process prior is it generates the e↵ect that loadings are shrunk more heavily as their

column indices increasing. With the size of latent space growing, the factors become

less important in contributing to the covariance (see (2.2)) therefore can be deleted

in downstream analysis. Gao et al. (2013) use another prior called three parameter

beta (TPB) prior in FA context. Their prior is equivalent to the horseshoe prior

formulated in a hierarchy with three levels. The hierarchy introduces three levels of

shrinkage. We are going to introduce the prior in next section in detail and use the
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Figure 2.2: Density of three parameter beta (TPB) distribution with a “ b “ 1{2
with di↵erent values of ⌫.

prior in the GFA context.

2.3 A new Bayesian group factor analysis model

The three parameter beta (TPB) distribution for a random variable 0 † Z † 1 has

the following density (Armagan et al., 2011)

fpz; a, b, ⌫q “

�pa ` bq

�paq�pbq
⌫bzb´1

p1 ´ zq

a´1
r1 ` p⌫ ´ 1qzs

´pa`bq, (2.11)

where a ° 0, b ° 0 and � ° 0. We denote this distribution as TPBpa, b, ⌫q. When

0 † a † 1 and 0 † b † 1, the distribution is bimodal, with two modes at 0 and

1 respectively. When a “ b “ 1{2, this prior becomes the class of horseshoe priors

studied by Carvalho et al. (2010). We call ⌫ the variance parameter. With fixed a

and b, smaller values of ⌫ put greater probability on z “ 1, while larger values of ⌫

move the probability mass towards z “ 0 (Armagan et al., 2011) (Figure 2.2). With

⌫ “ 1, this distribution becomes a beta distribution Bepb, aq.

Let � denote the parameter to which we are performing variable selection. We

assign the following TPB normal (TPBN) scale mixture prior to �

�|' „ Np0, 1{' ´ 1q, with ' „ TPBpa, b, ⌫q,
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where the shrinkage parameter ' follows a TPB distribution. With a “ b “ 1{2 and

⌫ “ 1 above prior becomes the second formulation of the standard horseshoe prior

in Table 2.1. The bimodal property of ' induces two distinct shrinkage behaviors.

The mode near one encourages 1{'´1 towards zero and induces strong shrinkage on

�. The mode near zero encourages 1{' ´ 1 towards infinity and generates a di↵use

prior. Further decreasing the variance parameter ⌫ puts more support on stronger

shrinkage (Armagan et al., 2011). If we let ✓ “ 1{' ´ 1, then this mixture prior has

the following hierarchical representation

� „ Np0, ✓q, ✓ „ Gapa, �q, � „ Gapb, ⌫q.

In previous work, Gao et al. (2013) extend the prior to three levels of a hierarchical

structure and apply it to a FA model. The three levels are formularized as

% „ TPBp1{2, 1{2, ⌫q, Level 1

⇣
h

„ TPBp1{2, 1{2, 1{% ´ 1q, Level 2

'
jh

„ TPBp1{2, 1{2, 1{⇣
h

´ 1q, Level 3

�
jh

„ Np0, 1{'
jh

´ 1q. (2.12)

At each of the three levels, a TPB distribution with horseshoe parameterization is

used to induce shrinkage with its own variance parameter (⌫ in (2.11)), which has a

further TPB distribution on previous hierarchy. We set the variance parameter in the

first level to 1, generating a standard horseshoe prior in the first level. Specifically,

in the first level the shrinkage parameter % applies horseshoe shrinkage across all

columns of the loading matrix, and jointly adjusts the support of ⇣
h

at either zero or

one. This can be interpreted as inducing su�cient shrinkage across loading columns

to identify the number of factors supported by the observed data. In particular,

when ⇣
h

is close to one, all elements in the loading are zero, inducing column-wise

shrinkage. The shrinkage parameter ⇣
h

in second level adjusts the shrinkage applied
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to each element of the hth loading, estimating the column-wise shrinkage by borrow-

ing strength across all elements in that loading. The last shrinkage parameter '
jh

creates element-wise sparsity in the loading matrix through a TPBN.

The three levels are further extended to jointly model sparse and dense compo-

nents (Gao et al., 2013). This is achieved by assigning a two component mixture to

the third level shrinkage parameter

'
jh

„ ⇡ ¨ TPBp1{2, 1{2, 1{⇣
h

´ 1q ` p1 ´ ⇡q ¨ �
⇣h

p¨q, (2.13)

where �
⇣h

p¨q is the Dirac delta function concentrated at ⇣
h

. The e↵ect of the two

component mixture is that the local shrinkage parameter '
jh

in (2.12) could select

between the third level or the second level. When it is from the second level, in which

case '
jh

“ ⇣
h

, the elements in the hth loading follows a shared normal prior �
jh

„

Np0, 1{⇣
h

´1q. Depending on the shrinkage parameter ⇣
h

, two e↵ects will be generated

for the hth loading. When ⇣
h

is close to zero, the whole loading is assigned a di↵use

normal prior and with probability one no elements will become zero. In contrast,

when ⇣
h

is close to one, elements in that loading are heavily pushed toward zero,

generating column-wise sparsity. We call factors corresponding to such loadings dense

factors. The motivation is that, in applications such as the analysis of gene expression

data, it has been shown that much of the variation in the observation is due to

technical (e.g., batch) or biological e↵ects (e.g., sex, ethnicity), which impact a large

number of genes (Leek et al., 2010). Therefore, the loadings corresponding to these

e↵ects will not be sparse. Equation (2.13) allows the local sparsity on the loading

to select between element-wise sparsity or column-wise sparsity. Jointly modeling

sparse and dense factors combines the idea of low-rank covariance estimation with

interpretability of factors (Zou et al., 2006; Parkhomenko et al., 2009). Those dense

factors capture the low-rank approximation of the covariance matrix. They usually

explain a large proportion of variance in the model. The sparse factors describe
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the impulse signals in observations and facilitate the interpretation of latent factors

(Chandrasekaran et al., 2011).

Using the third formulation of the horseshoe prior in Table 2.1, we write 2.12 as

� „ Gap1{2, ⌫q, ⌘ „ Gap1{2, �q,

⌧
h

„ Gap1{2, ⌘q, �
h

„ Gap1{2, ⌧
h

q,

�
jh

„ Gap1{2,�
h

q, ✓
jh

„ Gap1{2, �
jh

q,

�
jh

„ Np0, ✓
jh

q, (2.14)

with sparse/dense mixture

✓
jh

„ ⇡ ¨ Gap1{2, �
jh

q ` p1 ´ ⇡q ¨ �
�h

p¨q. (2.15)

We assign the prior in (2.14) and (2.15) to the view specific loading ⇤pvq in (2.8) to

develop a new GFA model. We call our model BASS standing for Bayesian group

factor Analysis with Structured Sparsity. We summarize BASS as follows. The

generative model for m coupled views ypvq
i

is

y

pvq
i

“ ⇤pvq
x

i

` ✏

pvq
i

, for v “ 1, . . . ,m, i “ 1, . . . , n.

We re-write this model as a factor model by concatenating the m vectors for subject

i into vector y
i

y

i

“ ⇤x
i

` ✏

i

, with x

i

„ N
k

p0, Iq, and ✏

i

„ N
p

p0,⌃q, (2.16)

where ⌃ “ diagp�2
1, ¨ ¨ ¨ , �2

p

q. We assign following priors on the parameters in the

model

⇤pvq
„ (2.14), (2.15), ⇡pvq

„ Bep1, 1q, for v “ 1, . . . ,m;

�´2
j

„ Gapa
�

, b
�

q for j “ 1, . . . , p.

a
�

and b
�

are set to 1 and 0.3 respectively to allow a relatively wide support of

variances (Bhattacharya and Dunson, 2011). These values correspond to a prior

with mean of 3.3 and variance of 11 of the precision parameter �´2
j

.
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2.4 Fast parameter estimation via parameter expanded EM

Given our setup, the full joint distribution of BASS factorizes as

ppY ,X,⇤,⇥,�,�,T ,⌘,�,Z,⌃,⇡q

“ ppY |⇤,X,⌃qppXq

ˆ pp⇤|⇥qpp⇥|�,Z,�qpp�|�qpp�|T qppT |⌘qpp⌘|�q

ˆ pp⌃qppZ|⇡qpp⇡q, (2.17)

where ⇥ “ t✓pvq
jh

u, � “ t�pvq
jh

u, � “ t�pvq
h

u, T “ t⌧ pvq
h

u, ⌘ “ t⌘pvq
u and � “ t�pvq

u

are the collections of the prior parameters in (2.14). The posterior distributions

of the model parameters could be either simulated through MCMC algorithms or

approximated using variational Bayes inference. We propose an MCMC algorithm

using block update of the loading matrix (Bhattacharya and Dunson, 2011). The

algorithm updates the loading matrix row by row, enabling fast mixing behavior.

Details of the algorithm can be found in Appendix A.1.

2.4.1 Standard EM

In this study, we are interested in a structured solution of the loading matrix. There-

fore we find a maximum a posteriori (MAP) estimator of the model using an expecta-

tion maximization (EM) algorithm (Dempster et al., 1977). The latent factorsX and

the indicator variables Z are treated as missing data and are estimated in E step, and

the rest parameters are estimated in M step. Let ⌅ “ t⇤,⇥,�,�,T ,⌘,�,⇡,⌃u be

the collection of the parameters optimized in M step. The complete log likelihood

(Q function) could be written as

Qp⌅|⌅psqq “ E
X,Z|⌅psq,Y log

`

pp⌅,X,Z|Y q

˘

. (2.18)

Since X and Z are conditional independent given ⌅, the expectation can be easily

calculated using the full conditionals of X and Z derived in the MCMC algorithm.
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In M step when estimating ⇤, the loadings specific to each view are estimated jointly.

We summarize our EM algorithm as follows.

Expectation Step Given model parameters, the distribution of latent factor X has

shown in Appendix A.1. The expectation of first and second moments of X can be

derived as

xx¨iy “ p⇤J⌃´1⇤` Iq

´1⇤J⌃´1
y¨i,

xx¨ix
J
¨i y “ xx¨iyxx¨iy

J
` p⇤J⌃´1⇤` Iq

´1.

The expectation of indicator variable ⇢pvq
h

“ xzpvq
h

y is

⇢pvq
h

“

⇡pvq ±

pv

j“1 Np�pvq
jh

; 0, ✓pvq
jh

qGap✓pvq
jh

; a, �pvq
jh

qGap�pvq
jh

; b,�pvq
h

q

p1 ´ ⇡pvq
q

±

pw

j“1 Np�pvq
jh

; 0,�pvq
h

q ` ⇡pvq ±

pw

j“1 Np�pvq
jh

; 0, ✓pvq
jh

qGap✓pvq
jh

; a, �pvq
jh

qGap�pvq
jh

; b,�pvq
h

q

.

Maximization Step The log posterior of ⇤ can be written as

log ppp⇤|´qq 9 tr
`

⌃´1⇤SXY

˘

´

1

2
tr

`

⇤J⌃´1⇤SXX

˘

´

1

2

k

ÿ

h“1

�

J
¨hDh

�¨h,

where

D

h

“ diag

˜

⇢p1q
h

✓p1q
1h

`

1 ´ ⇢p1q
h

�p1q
h

, ¨ ¨ ¨ ,
⇢pmq
h

✓pmq
pmh

`

1 ´ ⇢pmq
h

�pmq
h

¸

,

S

XY

“

n

ÿ

i“1

xx¨iyy
J
¨i , and S

XX

“

n

ÿ

i“1

xx¨ix
J
¨i y.

We take the derivative with respect to the loading column �¨h to get the MAP

solution. For the first part in the right side of the proportion,

Btr
`

⌃´1⇤SXY

˘

B�¨h
“ p1h

k

b I

p

q ˆ vec
`

⌃´1
S

Y X

˘

“ vec
`

⌃´1
S

Y X1h

k

˘

“ ⌃´1
S

Y X1h

k

,
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where vec is vectorization operation of a matrix, b is the Kronecker product, 1h

k

P

Rkˆ1 is a zero vector except hth row being 1, and S

Y X

“ pS

XY

q

J. For the second

part,

Btr
`

⇤J⌃´1⇤SXX

˘

B�¨h
“ 2p1h

k

b I

p

q ˆ vec
`

⌃´1⇤SXX

˘

“ 2vec
`

⌃´1⇤SXX1h

k

˘

“ 2⌃´1⇤SXX1h

k

.

For the third part, the derivative is D

h

�¨h. The MAP of �¨h can be obtained by

setting the derivative to zero, resulting

p

�¨h “

`

sXX

hh

I

p

`⌃D
h

˘´1

˜

s

Y X

¨h ´

ÿ

h

1‰h

�¨h1sXX

h

1
h

¸

, (2.19)

where sXX

ij

is the pi, jqth element of S

XX , and s

Y X

¨h is the hth column of S

Y X .

The matrix needed inverse is a diagonal matrix. Therefore p

�¨h can be calculated

e�ciently. The MAP of other model parameters can be obtained straightforwardly

from their full conditional distributions. Results are listed in Appendix A.2

2.4.2 Parameter expanded EM

The standard latent factor model in (2.1) is unidentifiable up to orthonormal trans-

formations. For any orthogonal matrix P with P

J
P “ I, the new parameter with

⇤1
“ ⇤P J and x

1
“ Px produces identical likelihood. When FA is used for pre-

diction or covariance estimation, the identifiability problem does not pose particular

ambiguities. However it does cause di�culties in factor interpretation. One tra-

ditional solution is to restrict the loading matrix to be lower-triangular and the

diagonal elements to be positive (West, 2003; Carvalho et al., 2008). This approach

gives special roles to the first k variables in y

i

, therefore they must be selected care-

fully (Carvalho et al., 2008). To handle this undesirable behavior, we propose an

parameter expanded EM algorithm (Liu et al., 1998) that favors loading orientations
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with desirable structures that match our prior. This idea comes from the recent work

of Ročková and George (2015). We now introduce our algorithm in detail.

The unidentifiability problem comes from the rotation invariance. Once the model

parameters are initialized, the original EM algorithm becomes di�cult to escape from

local suboptimal regions with undesirable loading orientations. It is due to the strong

coupling e↵ects between the updates of loading matrix and latent factors, making the

algorithm converge poorly. Parameter expansion (PX) has been shown to reduce this

coupling e↵ect by introducing expansion parameters (Liu et al., 1998; van Dyk and

Meng, 2001; Liu and Wu, 1999). PX has been studied under both deterministic (Liu

et al., 1998) and stochastic (Liu and Wu, 1999) optimization algorithms. Usually

those expansion parameters are chosen such that observed data likelihood dose not

depend on them after latent variables integrated out (Liu and Wu, 1999). However

they must be identifiable under the complete data likelihood with latent variables

introduced. When the expansion parameters are independent of the prior assigned

to parameters of interest, the posterior is invariant under parameter expansion (Liu

and Wu, 1999).

We extend our model in (2.16) to a parameter expanded version as

y

i

“ ⇤A´1
L

x

i

` ✏

i

, x

i

„ N
k

p0,Aq, ✏

i

„ N
k

p0,⌃q, (2.20)

where A

L

is the lower triangular part of Cholesky decomposition of A. The covari-

ance of y
i

is invariant under this expansion, therefore generating the same likelihood.

Note A

´1
L

is not an orthogonal matrix, however it contains a orthogonal transfor-

mation through polar decomposition as discussed by Ročková and George (2015).

We let ⇤‹
“ ⇤A´1

L

and assign our prior on this rotated loading matrix. One way

of thinking this parameter expansion is while keeping likelihood invariant, we are

trying to find an orientation that best fits our prior structure of the joint loading

matrix by rotating it to desired sparsity while sacrificing the independent assumption
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of factors. However, we must emphasize that the posterior of ⇤ is not the same as

the posterior in our original model. This is because the prior assigned to ⇤ depends

on the expansion parameter A, generating the dependence between the posterior of

⇤ and A.

We let ⌅‹
“ t⇤‹,⇥,�,�,T ,⌘,�,⇡,⌃u and the parameters of our expanded

model are t⌅‹
YAu. The EM algorithm in this expanded parameter space generates

a sequence t⌅‹p1qYAp1q,⌅‹p2qYAp2q, ¨ ¨ ¨ u. This sequence corresponds to a sequence of

parameter estimations in original space t⌅p1q,⌅p2q, ¨ ¨ ¨ u with ⇤ in the original space

being ⇤‹
A

L

(Ročková and George, 2015). At every iteration we initialize Apsq “ I

k

.

Then the new Q function could be written as

Qp⌅‹,A|⌅psqq “ E
X,Z|⌅psq,Y ,Apsq log

`

pp⌅‹,A,X,Z|Y q

˘

. (2.21)

We call our new EM algorithm PX-EM. The conditional distributions of X and

Z still factorizes in the expectation. However the distribution of x

i

depends on

expansion parameter A. The full joint distribution in (2.16) only changes ppXq,

with ⇤‹ substituting ⇤. Therefore the M step for ⌅‹ does not change. The only

term involving A is ppXq. Thus the value of A that maximizes (2.21) can be solved

by finding

Aps`1q “ argmax
A

Qp⌅‹,A|⌅psqq “ argmax
A

ˆ

const ´

n

2
log |A| ´

1

2
tr

`

A

´1
S

XX

˘

˙

,

where SXX is defined in the original EM algorithm. The solution is simply Aps`1q “

1
n

S

XX . For the E step, the ⇤ in the original space is first calculated and the expec-

tation is taken in the original model. The details of the updates of PX-EM algorithm

are shown in Appendix A.3.

As discussed before, the proposed PX-EM only keeps the likelihood invariant

but does not leave the prior invariant under transformation. Therefore it di↵ers

from the PX-EM studied by Liu et al. (1998), as discussed in Ročková and George
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(2015). Therefore we run our PX-EM only for a first small number of iterations

and then switch to our original EM algorithm targeting desired posterior modes of

⇤. The first couple runs of PX-EM greatly facilitate our model to escape from bad

loading orientations, as shown in simulation studies. By introducing extra parameter

A, the posterior modes in original space are intersected with equal likelihood curves

indexed byA in expanded space. Those curves serve to facilitate the traverse between

posterior modes in original space and generate prior favorable orientations in the

loading matrix (Ročková and George, 2015).

2.4.3 Computation complexity

The computational complexity of our block Gibbs sampler is relative demanding.

Updating each loading row requires first inversion of a k ˆ k matrix with Opk3
q

complexity and then calculating the mean with Opk2nq complexity. The complexity

of updating whole joint loading matrix requires p times this calculation. Other

updates are in lower order compared to updating loading. Therefore our Gibbs

sampler has Opk3p ` k2pnq complexity per iteration. In our EM algorithm, E step

requires Opk3
q for a matrix inversion, Opk2p`kpnq for calculating first moment, and

Opk2nq for calculating second moment. Calculations in M step are in lower order.

Therefore the original EM algorithm has Opk3
` k2p ` k2n ` kpnq complexity per

iteration. Our PX-EM algorithm introduce an additional Cholesky decomposition

with Opk3
q and a matrix multiplication with Opk2pq. The total complexity is in the

same order as the original EM algorithm.

2.5 Simulations

This this section we evaluate the performance of BASS in six simulation studies.

Their details are provided in Table 2.2.
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Table 2.2: Summary of six simulation studies to test the performance of BASS

Simulations Views Dimensions

Sim1 2 p1 “ 100, p2 “ 120

Sim2 2 p1 “ 100, p2 “ 120

Sim3 4 p1 “ 70, p2 “ 60, p3 “ 50, p4 “ 40

Sim4 4 p1 “ 70, p2 “ 60, p3 “ 50, p4 “ 40

Sim5 10 each 50

Sim6 10 each 50

Simulations Samples Factors

Sim1 n “ t20, 30, 40, 50u k “ 6 all sparse

Sim2 n “ t20, 30, 40, 50u k “ 8 sparse and dense

Sim3 n “ t20, 30, 40, 50u k “ 6 all sparse

Sim4 n “ t20, 30, 40, 50u k “ 8 sparse and dense

Sim5 n “ t20, 30, 40, 50u k “ 8 all sparse

Sim6 n “ t20, 30, 40, 50u k “ 10 sparse and dense

2.5.1 Simulating data

Paired views We perform two simulations in the context of two paired views with

p1 “ 100, p2 “ 120. The number of samples in these simulations is n “ t20, 30, 40, 50u.

The number of samples is chosen to be smaller than both p1 and p2 to reflect the

large p small n problem that motivates our structured approach. In Sim1 we simu-

late data with only sparse latent factors. We set k “ 6, where two sparse factors are

shared by both views (factor 1 and 2; Table 2.3), two sparse factors are specific to

y

p1q (factor 3 and 4; Table 2.3), and two sparse factors are specific to y

p2q (factor 5

and 6; Table 2.3). The elements in the sparse loading matrix are randomly generated

from a Np0, 4q Gaussian distribution, and sparsity is induced by setting 90% of the

elements in each loading to zero at random. We make sure the absolute values of

sparse loadings are greater than 0.5. Latent factors x
i

are generated from Np0, Iq.

Residual errors are generated by first generating the p “ p1 ` p2 diagonal entries of

the residual covariance matrix ⌃ from a uniform distribution on p0.5, 1.5q, and then

generating each column of the error matrix from Np0,⌃q.

In Sim2 we include both sparse and dense latent factors. We extend Sim1 to
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Table 2.3: Configurations of sparse (S) and dense (D) factors in Sim1 and Sim2 with
two views

Sim1 Sim2

Factors 1 2 3 4 5 6 1 2 3 4 5 6 7 8

Y

p1q
S S S S - - S D S S D - - -

Y

p2q
S S - - S S S D - - - S S D

Table 2.4: Configurations of sparse (S) and dense (D) factors in Sim3 and Sim4 with
four views

Sim3 Sim4

Factors 1 2 3 4 5 6 1 2 3 4 5 6 7 8

Y

p1q
S - - S - - S - - - D - - -

Y

p2q
- S - S S S - S - S - D - -

Y

p3q
- - S - S S - - S S - - D -

Y

p4q
- - - - - S - - S - - - - D

k “ 8 latent factors, where one of the shared sparse factors is now dense, and two

dense factors, each specific to one view, are added. For all dense factors, each loading

is generated according to a Np0, 4q Gaussian distribution (Table 2.3).

Four views We perform two additional simulations having four views with p1 “ 70,

p2 “ 60, p3 “ 50 and p4 “ 40. The number of samples is set to n “ t20, 30, 40, 50u.

In Sim3, we let k “ 6 and only simulate sparse factors. The first three factors

are specific to y

p1q, yp2q and y

p3q respectively, and last three correspond to di↵erent

subsets of the views (Table 2.4). In Sim4 we let k “ 8 and include both sparse and

dense factors (Table 2.4). Samples in these two simulations are generated following

the same method as in Sim1 and Sim2.

Ten views To further evaluate BASS on multiple views, we perform two additional

simulations on ten couple data sets with p
v

“ 50 for v “ 1, . . . , 10. The number of

samples is also set to n “ t20, 30, 40, 50u. In Sim5, we let k “ 8 and only simulate

sparse factors (Table 2.5). In Sim6 we let k “ 10 and simulate both sparse and

dense factors (Table 2.5). Samples in these two simulations are generated following
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Table 2.5: Configurations of sparse (S) and dense (D) factors in Sim5 and Sim6 with
ten views

Sim5 Sim6

Factors 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10

Y

p1q
S - - - - - - - S - - - - - D - - -

Y

p2q
S - - S - - - - S - - S - - D - - -

Y

p3q
S - - S S - - - - - - S - - D D - -

Y

p4q
S S - S S - S - - S - S - - D D - -

Y

p5q
- S - S S - S - - S - S S - - D D -

Y

p6q
- S - - - - S S - S - - S - - D D -

Y

p7q
- - S - - - S S - S S - S - - - D D

Y

p8q
- - S - - - S S - - S - S - - - D D

Y

p9q
- - S - - - - S - - S - - - - - - D

Y

p10q
- - S - - S - - - - S - - S - - - D

the same method as before.

2.5.2 Models for comparison

We compare BASS with five available linear models accepting multiple views: the

Bayesian group factor analysis model with an ARD prior (GFA) (Klami et al., 2013),

an extension of GFA by allowing element-wise sparsity with independent ARD priors

(sGFA) (Khan et al., 2014; Suvitaival et al., 2014), a regularized version of CCA

(RCCA) (González et al., 2008), sparse CCA (SCCA) (Witten and Tibshirani, 2009)

and the Bayesian joint factor analysis model studied by Ray et al. (2014) (JFA). We

further include a flexible non-linear model, manifold relevance determination (MRD)

model (Damianou et al., 2012), in our comparisons. To further evaluate sensitivity

of BASS on starting values we study three di↵erent initialization methods: random

starting points, a small number of MCMC runs (50 iterations) and a small number

of PX-EM runs (20 iterations).

The GFA model studied by Klami et al. (2013) puts an ARD prior on each column

of the loading matrices, encouraging column-wise shrinkage of the loading matrix but

not sparsity within these loadings. The computation complexity of GFA model with

variational update requires Opk3m ` k2p ` kpnq computation in updating loading
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matrices and their covariances. Updating factors is in the same order as BASS.

Updating ARD parameters is in lower order. Therefore GFA has Opk3m ` k2p `

k2n ` kpnq per iteration. In our simulations, we run the GFA model with the factor

number set to the correct values.

The sGFA model proposed by Khan et al. (2014) allows element-wise sparsity

using independent ARD priors on loading elements. Loading columns are modeled by

a spike and slab type mixture to allow column-wise sparsity. Inference is performed

with a Gibbs sampler without using block update. Its complexity is in Opk3
`

k2pnq per iteration. We run the sGFA model with correct factor numbers in our six

simulations.

We run the regularized version of classical CCA (RCCA) for comparison in Sim1

and Sim2 (González et al., 2008). Classical CCA aims to find k canonical projection

directions u

h

and v

h

(h “ 1, . . . , k) for Y

p1q and Y

p2q respectively such that i)

the correlation between u

J
h

Y

p1q and v

J
h

Y

p2q is maximized for h “ 1, . . . , k; and

ii) u

J
h

1Y
p1q is uncorrelated to u

J
h

Y

p1q with h1
‰ h, and similarly for v

h

and Y

p2q.

Let these two projection matrices be denoted U “ pu1, . . . ,uk

q P Rp1ˆk and V “

pv1, . . . ,vk

q P Rp2ˆk. These matrices are the maximum likelihood estimates of the

shared loading matrices in a probabilistic CCA model up to linear transformations

(Bach and Jordan, 2005). However, classical CCA requires the observation covariance

matrices to be non-singular and thus is not applicable in the current simulations.

Therefore, we use a regularized version of CCA (RCCA) (González et al., 2008) by

adding �1Ip1 and �2Ip2 to the two sample covariance matrices. The two regularization

parameters �1 and �2 are chosen according to leave-one-out cross-validation with

the search space defined on a 11 ˆ 11 grid from 0.0001 to 0.01. The projection

directions U and V are estimated using the best regularization parameters. We

let ⇤1
“ pU ;V q; this matrix is comparable to the simulated loading matrix up to

orthogonal transformations. We calculate the matrix P such that the Frobenius norm
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between ⇤1
P

J and simulated ⇤ is minimized, with the constraint that P

J
P “ I.

This is done by the constraint preserving updates of the objective function (Wen and

Yin, 2013). After finding the optimal orthogonal transformation matrix, we recover

⇤1
P

J as the estimated loading matrix. We choose 6 and 8 regularized projections for

comparison in Sim1 and Sim2 respectively, representing the true number of latent

linear factors. RCCA does not apply to multiple coupled views, therefore is not

included in other simulations.

The sparse CCA (SCCA) method (Witten and Tibshirani, 2009) maximizes cor-

relation between two views after projecting the original space with `1 penalties on the

projection directions, producing sparse matrices U and V . This method is encoded

in the R package PMA (Witten et al., 2013). As with RCCA, we find an optimal

orthogonal transformation matrix P such that the Frobenius norm between ⇤1
P

J

and simulated ⇤ was minimized, where ⇤1 is the vertical concatenation of the re-

covered sparse U and V . We choose 6 and 8 sparse projections in Sim1 and Sim2

for comparison respectively. An extension of SCCA allows for multiple views (Wit-

ten and Tibshirani, 2009). For Sim3 and Sim4, we recover four sparse projection

matrices U p1q,U p2q,U p3q,U p4q and for Sim5 and Sim6, we recover ten projection ma-

trices. ⇤1 is calculated with the concatenation of those projection matrices. Then the

orthogonal transformation matrix P is calculated similarly by minimizing the Frobe-

nius norm between ⇤1
P

J and the true loading matrix ⇤. The number of canonical

projections is set to 6 in Sim3, 8 in Sim4 and Sim5 and 10 in Sim6.

The Bayesian joint factor analysis model (JFA) studied by Ray et al. (2014) puts

Indian bu↵et process prior (Gri�ths and Ghahramani, 2011) on the factor indicators

and inverse gamma prior on both loadings and factor values. Therefore the sparsity

structure is assigned on factors instead of loading matrices. In addition, JFA only

partitions latent factors to view specific ones and the one shared by all views. Its

complexity is in Opk3
` k2pnq per iteration with Gibbs sampler. We run JFA model
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on our simulations with factor numbers set to the correct ones.

The non-linear manifold relevance determination (MRD) model (Damianou et al.,

2012) extends Gaussian process latent variable (GPLVM) model (Lawrence, 2005)

to include multiple views. A GPLVM puts a Gaussian process prior on latent vari-

able space. It has a dual probabilistic PCA interpretation with loading columns

marginalized out using a Gaussian prior. MRD extends GPLVM by putting multiple

weight vectors on latent variables through a Gaussian process kernel. Each of the

weight vectors corresponds to an view, therefore they determine a soft partition of

latent variable space. Its complexity is in cubic in number of samples. This complex-

ity is further reduced to quadratic using a sparse Gaussian process prior. Posterior

inference and prediction using the MRD model is performed with Matlab package

vargplvm (Damianou et al., 2012). We use the linear kernel with feature selection

(i.e., Linard2 kernel). We run the MRD model on our simulated data with the

correct number of factors.

2.5.3 Methods of comparison

We compare the loading matrices estimated by BASS with those generated from

alternative methods. We use the two stability indices proposed by Gao et al. (2013)

to make the comparison. The sparse stability index (SSI) measures the similarity

between sparse loadings. SSI is invariant to column scale and factor switching, but

it penalizes factor splitting and matrix rotation. Larger values of the SSI indicate

better recovery. Let C P Rk1ˆk2 be the absolute correlation matrix of columns of

two sparse loading matrices. Then SSI can be calculated by (2.22). The dense

stability index (DSI) quantifies the di↵erence between dense loadings. It is invariant

to orthogonal matrix rotation, factor switching, and scale changes. Let M1 and M2
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be the dense loading matrices. The DSI can be calculated using (2.23).

SSI “

1

2k1

k1
ÿ

h1“1

ˆ

maxpc

h1,¨q ´

∞

k2

h2“1 Ipc
h1,h2 ° c

h1,¨qch1,h2

k2 ´ 1

˙

`

1

2k2

k2
ÿ

h2“1

ˆ

maxpc¨,h2q ´

∞

k1

h1“1 Ipc
h1,h2 ° c¨,h2qc

h1,h2

k1 ´ 1

˙

, (2.22)

DSI “

1

p2
trpM1M

J
1 ´ M2M

J
2 q. (2.23)

In Sim1, Sim3 and Sim5, all factors are regarded as sparse, and SSI’s are calculated

between true combined loading matrices and combined recovered loading matrices. In

Sim2, Sim4 and Sim6, because none of the compared methods explicitly distinguishes

sparse and dense factors, we categorize them as follows. We first select a global

sparsity threshold on the elements of the combined loading matrix. Here we set that

value to 0.15. Elements below this threshold are set to zero in the loading matrix.

Then we choose the first q loading columns with the fewest non-zero elements as the

sparse loadings, where q equals to the number of sparse loadings in the true loading

matrices. The remaining loading columns are considered dense loadings. We find

that varying the sparsity threshold does not a↵ect the separation of sparse and dense

loadings significantly for those compared models. SSI’s are then calculated for the

true combined sparse loading matrix and the combined recovered sparse loadings.

To calculate DSI, we treat the loading matrices ⇤pvq for each view separately, and

calculate the DSI for the recovered dense components of each view. The final DSI for

each method is the sum of the m separate DSI’s. Due to the fact that MRD does not

provide estimations of loading matrix, we exclude MRD model in this comparison.

We further evaluate the prediction performance of BASS and other methods.

According to (2.8), the joint distribution of any y

pvq
i

and the rests y

p´vq
i

can be
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written as
˜

y

pvq
i

y

p´vq
i

¸

„ N

ˆˆ

0
0

˙

,

ˆ

⇤pvq
p⇤pvq

q

J
`⌃pvq ⇤pvq

p⇤p´vq
q

J

⇤p´vq
p⇤pvq

q

J ⇤p´vq
p⇤p´vq

q

J
`⌃p´vq

˙˙

,

where ⇤p´vq and ⌃p´vq are the loading matrix and error covariance excluding the vth

view. Therefore the conditional distribution of ypvq
i

is a multivariate response in a

multiple linear regression model treating y

p´vq
i

as predictors, with mean of

Epy

pvq
i

|y

p´vq
i

q “ ⇤pvq
p⇤p´vq

q

J`

⇤p´vq
p⇤p´vq

q

J
`⌃p´vq˘´1

y

p´vq
i

“

k

ÿ

h“1

�

pvq
¨h p�

p´vq
¨h q

J`

⇤p´vq
p⇤p´vq

q

J
`⌃p´vq˘´1

y

p´vq
i

. (2.24)

We use this property to predict certain views given others. For the six simulations,

we generate n “ t10, 30, 50, 100, 200u as training data. In addition we generate test

data using true model parameters. The number of test samples is set to 200. For

each simulation study, we choose one view in the test data as response and use

other views and model parameters estimated by training data to perform prediction.

Mean squared error (MSE) is used to evaluate the prediction performance. For Sim1

and Sim2, yp2q
i

is used as response; for Sim3 and Sim4, yp3q
i

is used as response;

and for Sim5 and Sim6, yp8q
i

, yp9q
i

and y

p10q
i

are used as responses. The JFA model

uses sparsity inducing prior instead of an independent Gaussian on latent factors,

therefore we exclude JFA model in prediction.

2.5.4 Simulation results

We first evaluate the performance of BASS in terms of recovering the correct number

of sparse and dense factors in the six simulations. We perform 20 repeats for each

initialization of BASS: random initialization (EM), 50 MCMC runs (MCMC-EM)

and 20 parameter expanded EM runs (PX-EM). In Sim1 and Sim3, we set the

starting number of factors to 10. In Sim2, Sim4, Sim5 and Sim6, we set the starting
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Table 2.6: Percentage of latent factors correctly estimated across 20 runs with
n “ 40.

EM MCMC-EM PX-EM

Sim1 79.17% 99.17% 91.67%

Sim2 61.25% 93.75% 85.62%

Sim3 50.00% 78.57% 73.57%

Sim4 62.78% 86.11% 82.78%

Sim5 17.22% 86.67% 66.67%

Sim6 13.64% 60.45% 62.73%

factor number to 15. We calculate the percentage of correctly identified factors across

the 20 runs in the simulations with n “ 40 (Table 2.6). MCMC-EM has the most

accurate results, followed by PX-EM and then EM. With the increase of the number

of views, the accuracy of all methods starts to deteriorate.

We run the other methods on the six simulations and compare the estimated

loading matrices. BASS recovers the closest matches to the simulated loading matri-

ces across the compared methods from a visual inspection (Figures 2.3, 2.4 and 2.5).

The correctly estimated loading matrices by three di↵erent initializations of BASS

produce similar results. We only plot matrices from one method.

Two views We then quantitatively compare the results. With two views (Sim1 and

Sim2 ), our model produce the best SSI’s and DSI’s among the compared models

across di↵erent sample sizes (Figure 2.6). The column-wise sparsity induced by

spike-slab type prior in sGFA produces nice loading selection with zero columns

(Figure 2.3). However, its performance is limited in sparse loadings because the

ARD prior does not produce su�cient element-wise sparsity. Therefore it produces

relative low SSI’s (Figure 2.6). As a consequence of not matching sparse loadings

well, sGFA has di�culty recovering dense loadings, especially with small sample sizes

(Figure 2.6). The GFA model su↵ers from recovering sparse loadings due to the ARD

prior assigned on the entire column (Figure 2.3, Figure 2.6). Its dense loadings are
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Figure 2.3: Estimated loading matrices for two paired views with n “ 40 for
di↵erent methods. The columns of estimated loadings are reordered and flipped sign
when necessary for visual convenience. Horizontal lines separate two views. Panel
A: Results in Sim1. Panel B: Results in Sim2.

also influenced with small sample sizes (Figure 2.6). RCCA also su↵ers in the two

simulations because the recovered loadings are not su�ciently sparse (Figure 2.3).

SCCA recovers shared sparse loadings well in Sim1 (Figure 2.3). However SCCA

does not model local covariance structure, and therefore is unable to recover the

sparse loadings specific to either of views in Sim1 (Figures 2.3A), resulting again in

poor SSI’s (Figure 2.6). Adding dense loadings makes it worse (Figure 2.3B, 2.6).

JFA model does not recover the true loading well due to the sparsity is assigned on
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Figure 2.4: Estimated loading matrices for four coupled views with n “ 40 for
di↵erent methods. The columns are re-arranged in the similar manner as in Figure
2.3. Panel A: Results in Sim3. Panel B: Results in Sim4.

factors instead of loadings (Figure 2.3). Its SSI’s and DSI’s also greatly deteriorate

(Figure 2.6).

We next evaluate their prediction performance with two views. In Sim1, SCCA

achieves the best prediction accuracy in three training sample sizes (Table 2.7). This

can be attributed to the nice performance of SCCA in identifying shared sparse load-

ings (Figure 2.3), and the prediction accuracy comes only through shared loadings.

Note from (2.24) that zero columns in either ⇤pvq or ⇤p´vq decouple the contribution
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of the factors to the dependency between y

pvq
i

and y

p´vq
i

. In Sim2, both shared sparse

and dense factors contribute to the prediction performance. In this setting BASS

achieves the best prediction accuracy (Table 2.7).

Four views For simulations with four views (Sim3 and Sim4 ), BASS still can cor-

rectly identify sparse and dense property of factors and their active views (Figure

2.4). sGFA still achieves column-wise sparsity well as in two views, however its spar-

sity level within factors is not as good as BASS. GFA su↵ers from column shrinkage:

columns with zero values are not e↵ectively shrunk to zero (Figure 2.4B). Its element-

wise shrinkage is also not as e↵ective as BASS or sGFA (Figure 2.4). The results

of SCCA and JFA do not match true loading matrices (Figure 2.4). The results of

stability indices show that BASS still produce the best SSI’s and DSI’s among the

compared models in almost all di↵erent sample sizes (Figure 2.7). sGFA achieves

similar SSI values in Sim3 with n “ 40 compared to BASS with random initializa-

tion (EM), but still inferior compared to MCMC-EM and PX-EM. The advantage

of BASS in other cases is very clear (Figure 2.7). BASS also achieves the best pre-

diction performance with y

p3q
i

as response and the rest views as predictors (Table

2.8).

Ten views When we increase the view number to ten (Sim5 and Sim6 ), BASS still

can correctly identify the sparse and dense properties of factors and their active

views (Figure 2.5). The performance of sGFA in column selection remains e↵ective,

well with an inferior element-wise shrinkage compared to BASS (Figure 2.5). GFA

su↵ers greatly from both column-wise and element-wise sparsity (Figure 2.5). SCCA

and JFA do not produce results that match true loading matrices (Figure 2.5). For

stability indices, BASS with MCMC-EM and PX-EM produce the best SSI’s in Sim5

among the compared models in almost all di↵erent sample sizes (Figure 2.7). sGFA
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Figure 2.5: Estimated loading matrices for ten coupled views with n “ 40 for
di↵erent methods. The columns are re-arranged in the similar manner as in Figure
2.3. Panel A: Results in Sim5. Panel B: Results in Sim6.
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Figure 2.6: Comparison of stability indices on estimated loading matrices with two
views. For SSI, a larger value indicates the estimated sparse loadings are closer to
true sparse loadings. For DSI, a smaller value indicates estimated dense loadings are
closer to the true dense loadings. The boundaries of the box are the first and third
quartiles. The line extends to the highest/lowest value that is within 1.5 times the
distance between the first and third quartiles of the box boundaries.

achieves better SSI’s than BASS with random initialization (EM). GFA has a better

SSI’s than EM only with n “ 40. The advantage of BASS over other models is clear

(Figures 2.7). In Sim6, BASS has SSI’s and DSI’s at least as good as the best of other

compared models (Figure 2.8). BASS also achieves the best prediction performance

in Sim5. However GFA has lowest MSE’s in Sim6 with n “ 20 and n “ 40, although

its loading matrices do not produce su�cient column-wise and element-wise sparsity

(Figure 2.5).

2.6 Applications

In this section we consider three di↵erent applications of BASS. In the first appli-

cation we evaluate the prediction performance with multivariate correlated response

variables in the Mulan library (Tsoumakas et al., 2011). In the second application
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Figure 2.7: Comparison of stability indices on estimated loading matrices with
four views. For SSI, a larger value indicates the estimated sparse loadings are closer
to true sparse loadings. For DSI, a smaller value indicates estimated dense loadings
are closer to the true dense loadings. Boxes have the same meaning as in Figure 2.6.

Figure 2.8: Comparison of stability indices on estimated loading matrices with ten
views. For SSI, a larger value indicates the estimated sparse loadings are closer to
true sparse loadings. For DSI, a smaller value indicates estimated dense loadings are
closer to the true dense loadings. Boxes have the same meaning as in Figure 2.6.
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Table 2.7: Prediction accuracy with two views on n
s

“ 200 test samples. yp2q
i

in test

samples is treated as response and y

p1q
i

is used to predict the response using param-
eters learned from training sets. Prediction accuracy is measured by mean squared
error (MSE) between simulated y

p1q
i

and Epy

p1q
i

|y

p2q
i

q. Values presented are the mean
MSE with standard deviation calculated from 20 repeats of di↵erent models. Model
with smallest MSE is bolded. When multiple models have the smallest MSE the one
with least standard deviation is bolded.

BASS

nt EM MCMC-EM PX-EM sGFA GFA SCCA RCCA MRD-lin

Sim1

10 1.00(0.024) 1.03(0.024) 1.02(0.028) 1.00(†1e-3) 0.98(0.002) 0.88 1.01 1.08(0.024)
30 0.90(0.022) 0.88(0.001) 0.88(0.003) 0.92(0.005) 0.93(0.002) 0.88 0.97 1.00(0.016)
50 0.88(0.011) 0.87(0.003) 0.88(0.014) 0.90(0.004) 0.92(0.002) 0.88 0.92 0.98(0.028)
100 0.88(0.010) 0.87(0.001) 0.87(0.005) 0.89(0.003) 0.89(†1e-3) 0.87 0.91 0.97(0.016)
200 0.88(0.007) 0.87(0.004) 0.87(0.005) 0.88(0.001) 0.88(†1e-3) 0.87 0.95 1.16(0.202)

Sim2

10 0.80(0.161) 0.82(0.162) 0.68(0.003) 0.74(0.043) 0.89(0.023) 0.86 0.72 1.14(0.002)
30 0.72(0.092) 0.72(0.097) 0.67(0.016) 0.67(0.014) 0.66(0.006) 0.86 0.70 1.15(0.034)
50 0.71(0.155) 0.70(0.155) 0.65(0.105) 0.63(0.009) 0.67(†1e-3) 0.85 0.72 1.17(0.009)
100 0.63(0.066) 0.61(0.013) 0.62(0.013) 0.62(0.005) 0.61(0.001) 0.85 0.75 1.13(0.013)
200 0.65(0.099) 0.61(0.012) 0.63(0.020) 0.62(0.007) 0.61(0.002) 0.85 0.81 1.55(0.591)

we apply BASS on gene expression data from the Cholesterol and Pharmacoge-

nomic (CAP) study. The data consist of expression level measurements for about

ten thousands genes in multiple lymphoblastoid cell lines (LCLs) under two con-

ditions (Mangravite et al., 2013; Brown et al., 2013). BASS is used to detect the

sparse covariance structures specific to each condition, and then to construct two

Table 2.8: Prediction accuracy with four views on n
s

“ 200 test samples. yp3q
i

in test

samples is treated as response and y

p1q
i

, yp2q
i

and y

p4q
i

are used to predict the response
using parameters learned from training sets. Means of MSE and standard deviations
are calculated and shown in a similar manner to the results shown in Table 2.7.

BASS

nt EM MCMC-EM PX-EM sGFA GFA SCCA MRD-lin

Sim3

10 1.03(0.044) 1.02(0.019) 1.01(0.010) 1.00(†1e-3) 0.97(0.001) 1.00 1.00(†1e-3)
30 0.91(0.049) 0.87(0.016) 0.88(0.007) 0.90(0.007) 0.93(0.003) 1.00 0.99(0.021)
50 0.85(0.019) 0.85(†1e-3) 0.87(0.038) 0.87(0.005) 0.88(0.002) 1.01 1.04(0.095)
100 0.85(0.019) 0.84(0.002) 0.84(0.003) 0.86(0.004) 0.87(0.001) 1.11 0.92(0.014)
200 0.84(0.001) 0.84(†1e-3) 0.84(0.004) 0.84(0.001) 0.83(0.001) 1.13 1.16(0.140)

Sim4

10 1.05(0.095) 1.03(0.094) 1.10(0.138) 1.00(†1e-3) 1.32(0.029) 1.35 1.98(0.067)
30 0.97(0.020) 0.95(0.015) 0.96(0.013) 0.97(0.007) 1.03(0.003) 1.40 1.50(0.090)
50 0.94(0.013) 0.93(0.005) 0.94(0.012) 0.95(0.005) 1.02(0.017) 1.40 1.50(0.084)
100 0.93(0.015) 0.93(0.007) 0.93(0.010) 0.94(0.003) 0.96(†1e-3) 1.51 1.47(0.088)
200 0.91(0.029) 0.92(0.022) 0.89(0.047) 0.93(0.001) 0.89(0.001) 1.77 1.58(0.132)
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Table 2.9: Prediction mean squared error with ten views on n
s

“ 200 test samples.
y

p8q
i

,yp9q
i

and y

p10q
i

in test samples are treated as responses and the rests are used
to predict the response using parameters learned from training sets. Means of MSE
and standard deviations are calculated and shown in a similar manner to the results
shown in Table 2.7.

BASS

nt EM MCMC-EM PX-EM sGFA GFA SCCA MRD-lin

Sim5

10 1.01(0.020) 1.00(0.011) 1.00(0.007) 0.99(0.008) 1.00(0.002) 0.99 1.49(0.001)
30 0.88(0.031) 0.86(0.018) 0.87(0.028) 0.89(0.005) 0.90(0.002) 0.99 1.01(0.035)
50 0.86(0.023) 0.85(†1e-3) 0.86(0.022) 0.87(0.003) 0.88(0.001) 0.99 0.97(0.020)
100 0.85(0.007) 0.85(†1e-3) 0.85(0.002) 0.86(0.003) 0.87(0.001) 1.01 0.92(0.039)
200 0.85(0.006) 0.84(†1e-3) 0.84(†1e-3) 0.84(0.001) 0.83(0.001) 0.96 1.06(0.105)

Sim6

10 0.61(0.164) 0.57(0.116) 0.51(0.031) 0.58(0.012) 0.75(0.011) 0.97 1.00(†1e-3)
30 0.49(0.160) 0.40(0.093) 0.38(0.007) 0.43(0.006) 0.40(0.005) 0.98 0.46(0.006)
50 0.44(0.099) 0.39(0.011) 0.39(0.004) 0.41(0.002) 0.40(0.001) 1.01 0.42(0.009)
100 0.39(0.033) 0.39(0.004) 0.39(0.011) 0.39(0.002) 0.39(0.001) 0.97 0.52(0.249)
200 0.38(0.003) 0.38(0.001) 0.38(0.001) 0.39(0.001) 0.39(0.001) 1.01 0.40(0.020)

condition-specific co-expression networks. In the third application, we apply BASS

on document data with approximately 20, 000 newsgroup documents divided into 20

newsgroups (Joachims, 1997).

2.6.1 Multivariate response prediction

The Mulan library consists of multiple data sets with the aim of studying multi-label

predictions (Tsoumakas et al., 2011). This library is used to test the Bayesian CCA

model in multi-label prediction context with 0{1 labels (Klami et al., 2013). There

are two views (m “ 2), the labels are treated as one view (Y p1q) and the features

are treated as another (Y p2q). Recently Mulan adds multi-target regression data sets

with continuous target variables. We choose ten benchmark data sets from Mulan

library. Four of them have 0{1 labels as responses, which are also studied in (Klami

et al., 2013). Another six data sets consist of continuous responses (Table 2.10).

We run BASS, sGFA, GFA and MRD on these ten data sets. Prediction accuracy

is used to compare the models. For 0{1 labels, we use the Hamming loss between

the predicted labels and true labels to calculate the prediction error. The predicted

labels on test samples are calculated using the same thresholding rules in (Klami
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Table 2.10: Multivariate response prediction from Mulan library. First View is used
as predictors and the second view is treated as response. n

t

: the number of training
samples. n

s

: the number of test samples. The first view in the first four data sets are
0{1 responses, and the rest six are continuous responses. For 0{1 response, prediction
accuracy is evaluated using Hamming loss between predicted labels and test labels in
test samples. For continuous response, mean squared error (MSE) is used to evaluate
prediction accuracy. Values presented are the minimum Hamming loss/MSE across
20 repeats of di↵erent models. Model with smallest MSE is bolded. When multiple
models have the smallest MSE the one with least standard deviation is bolded.

Data set p1 p2 nt ns BASS sGFA GFA MRD-lin

bibtex 1836 159 4880 2515 0.014(0.001) 0.014(0.001) 0.014(†1e-3) 0.014(0.001)
delicious 983 500 12920 3185 0.016(0.001) 0.016(†1e-3) 0.017(†1e-3) 0.020(†1e-3)
mediamill 120 101 30993 12914 0.032(0.001) 0.032(0.005) 0.034(†1e-3) 0.043(†1e-3)
scene 294 6 1211 1196 0.131(0.016) 0.123(0.029) 0.130(0.002) 0.138(0.026)

rf1 64 8 4108 5017 0.292(0.050) 0.390(0.008) 0.309(†1e-3) 0.370(0.146)
rf2 576 8 4108 5017 0.271(0.027) 0.478(0.004) 0.427(0.001) 0.438(0.160)
scm1d 280 16 8145 1658 0.211(0.005) 0.225(0.028) 0.213(†1e-3) 0.212(0.163)
scm20d 61 16 7463 1503 0.650(0.015) 0.538(0.006) 0.720(0.002) 0.608(0.033)
atp1d 370 6 237 100 0.176(0.032) 0.208(0.006) 0.201(0.001) 0.219(0.113)
atp7d 370 6 196 100 0.597(0.063) 0.537(0.015) 0.537(0.003) 0.545(0.049)

et al., 2013). The value of the threshold is chosen so that the Hamming loss between

estimated labels and true labels in training set is maximized. We use the R package

PresenceAbsence and Matlab function perfcurve to find the best thresholds for

those models. For continuous target variables, mean squared error (MSE) is used to

evaluate prediction accuracy. We initialize BASS with 500 factors and 50 PX-EM

initial iterations. The other models are set to the default parameters with factor

numbers set to minpp1, p2, 50q. The linear kernel with feature selection (Linard2

kernel) is used in MRD. All the models are repeated 20 times, and minimum errors

are reported. The results are summarized in Table 2.10. BASS achieves the best

prediction accuracy in five data sets. The averaged factors identified by BASS are

shown in Table 2.11.

2.6.2 Gene expression data analysis

We apply our model to gene expression data from the Cholesterol and Pharmacoge-

nomic (CAP) study, consisting of expression level measurements for 10, 195 genes in
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Table 2.11: Averaged estimated latent factors from the ten data sets in Mulan library.
S represents a sparse vector; D represents a dense vector.

Y

p1q
S S - D D - S D

Total

Y

p2q
S - S D - D D S

bibtex 355 55 2 0 0 0 0 0 413

delicious 489 10 0 0 0 0 0 0 499

mediamill 56 19 36 0 0 0 0 30 141

scene 27 20 0 32 4 0 35 15 133

rf1 5 1 0 8 0 0 6 4 25

rf2 43 93 1 39 5 0 57 25 263

scm1d 29 13 2 22 0 1 43 6 115

scm20d 11 4 2 13 0 0 20 1 53

atp1d 0 50 0 3 3 1 2 0 59

atp7d 0 46 0 1 1 1 2 0 51

480 lymphoblastoid cell lines (LCLs) after 24-hour exposure to either a control bu↵er

(Y p1q) or 2 µM simvastatin acid (Y p2q) (Mangravite et al., 2013; Brown et al., 2013).

In this example, the number of views m “ 2, representing gene expression levels on

the same samples and genes after the two di↵erent exposures. The expression lev-

els are preprocessed to adjust for experimental traits (batch e↵ects and cell growth

rate) and clinical traits of donors (age, BMI, smoking status and gender). We have

projected the adjusted expression levels to the quantiles of a standard normal within

gene. Then we apply BASS with the initial number of factors set to k “ 2, 000. We

perform parameter estimation 100 times on these data with PX-EM initialization

of 100 iterations. Across these 100 runs, the estimated number of recovered factors

is approximately 870. Across the 100 runs, we only discover very few dense factors

(Table 2.12). This potentially is due to the systematic variations have been adjusted

by the preprocessing step. In addition the idiosyncratic errors explain the majority

of total variance (85.27%).

We compute the proportion of variance explained (PVE) by those sparse factors

(Figure 2.9A). The PVE for the hth factor is calculated as the variance explained
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Table 2.12: Estimated latent factors in the CAP gene expression data with two
views. S represents a sparse vector; D represents a dense vector. PVE: proportion
of variance explained.

Y

p1q
S S - D D -

rest Total

Y

p2q
S - S D - D

PX-EM

#Factor 731 63 62 1 0 0 12 870

PVE(%) 11.18 0.88 0.82 0.17 0.20 0.10 1.98 15.31

EM

#Factor 23 175 200 5 26 28 16 473

PVE(%) 0.35 0.42 0.61 3.63 31.97 38.91 14.80 90.67

by the hth factor divided by the total variance: trp�¨h�J
¨hq{trp⇤⇤J

` ⌃q. Shared

sparse factors explain more variance than specific sparse factors, which indicates the

expression variations are mostly maintained between the two treatments. We also

find that 87.48% of the specific sparse factors contain fewer than 100 genes, and

0.71% of those factors have greater than 500 genes. The shared sparse factors have

more genes than those specific ones. 71.95% shared sparse factors have fewer than

100 genes, and 4.54% such factors have greater than 500 genes. (Figure 2.9B).

The sparse factors specific to each view characterize the local sparse covariance

estimates. We use view specific sparse factors to a construct a gene co-expression net-

work that is uniquely found in that condition. We call such a network the condition-

specific network. The problem of constructions of condition specific co-expression

networks have been both studied by machine learning and computational biology

approaches (Li, 2002; Ma et al., 2011). Our BASS model provides an natural al-

ternative way to solve this problem. We denote B

pvq
s

as the sparse loadings in B

pvq

(v P t1, 2u). Then ⌦pvq
s

“ B

pvq
s

pB

pvq
s

q

J
`⌃pvq represents the regularized estimate of

the covariance matrix specific to each view after controlling for the contributions of

the dense factors. We invert this positive definite covariance matrix to get a precision

matrix R

pvq
“ p⌦

pvq
s

q

´1. The partial correlation between gene j1 and j2 is then cal-

culated by normalizing the precision matrix (Edwards, 2000; Schäfer and Strimmer,
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Figure 2.9: Results of applying BASS to the CAP gene expression data. Y

p1q:
the view from bu↵er-treated samples. Y

p2q: the view from statin-treated samples.
Panel A: the proportion of variance explained (PVE) by di↵erent factors. Factors
are ordered by their PVE’s and first 10 factors are displayed. PVE is on the log10
scale. Panel B: Histogram of the number of genes in di↵erent sparse factors. The
count is displayed in square root scale.

2005):

⇢pvq
j1j2

“ ´

rpvq
j1j2

b

rpvq
j1j1

rpvq
j2j2

.

A partial correlation that is zero for two genes suggests that they are conditionally

independent (conditional on the remaining genes in the network). Connecting genes

with non-zero partial correlation results a undirected network known as a Gaussian

graphical model (Edwards, 2000; Koller and Friedman, 2009).

We use following method to combine the results of 100 runs to construct a single

condition-specific gene co-expression network for each view. For each run, we first

construct a network by connecting genes with partial correlation greater than a
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Figure 2.10: Estimated condition-specific gene co-expression networks from CAP
data. Two networks are constructed to represent the condition-specific co-expression
between bu↵er-treated samples (Panel A) and statin-treated samples (Panel B). The
node and label size is scaled according to the number of shortest paths from all
vertices to all others that pass through that node (betweenness centrality).

threshold (0.01). Then we combine the 100 networks to construct a single network

by keeping the edges that appear in more than 50 (50%) networks. The final two

condition-specific gene co-expression networks contains 160 genes and 1, 244 edges

(bu↵er treated view, Figure 2.10A) 154 genes and 1, 030 edges (statin-treated view,

Figure 2.10B) respectively.

2.6.3 Document data analysis

In this application we consider the 20 newsgroup document data (Joachims, 1997).

The documents have processed so that duplicates and headers are removed, resulting

18, 846 documents. The data are downloaded using scikit-learn Python package

(Pedregosa et al., 2011). We convert the raw data into TF-IDF vectors and select

319 words using SVM feature selection in scikit-learn. One document has a zero

vector across all the words therefore is deleted. We further select ten documents

from each newsgroup as test data.
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We apply BASS on the transposed data with 20 newsgroups as 20 views. We set

2, 000 initial factors and perform 100 parameter estimations, with 100 initial PX-EM

iterations. There are approximately 825 factors recovered. We analyze the group

specific words in following way. For each estimated loading, we calculate its Pearson

correlations with group indicator vectors consisting of ones for a specific group and

zeros for other groups. Then the loadings with the ten largest absolute correlation

coe�cients are considered and the words with the largest absolute factor scores

corresponding to the ten loadings are listed. The results of one run are shown in Table

A.1. For example, the alt.atheism newsgroup has ’islam’, ’keith’ and ’okcforum’ as

the top words, and the rec.sport.baseball newsgroup has ’baseball’, ’braves’ and

’runs’ as top words. We further partition the newsgroups into six classes according

to subject matter to analyze the shared words across di↵erent newsgroups (Table

2.13). Similarly we calculate the Pearson correlations with cross group 0{1 indicator

vectors and analyze the top words in the ten factors with largest absolute correlation

coe�cients (Table 2.13). For example, the newsgroups of talk.religion.misc,

alt.atheism and soc.religion.christian share ’god’, ’bible’ and ’christian’ as

top words. One of the selected shared loading for this newsgroup class is shown in

Figure 2.11A.

Then we use the estimated loading and factors from training set to predict the

document groups in the test set. The estimated loading matrix and factors give a

regularized matrix approximation of training data matrix. To estimate the load-

ings in the test set, we left multiplied the test data matrix by the Moore-Penrose

pseudoinverse of factors estimated from training data. This give a rough estimate

of the loading matrix for test data. Then test labels are predicted using ten nearest

neighbors based on the loading rows. For the 200 test documents, we generate an

approximately 58.17% accuracy using Hamming loss. One predicted and true news-

group labels are shown in Figure 2.11B. Due to some of the newsgroups are very
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Figure 2.11: Newsgroup prediction on 200 test documents. Panel A: One factor
loading selected as shared by three newsgroups ( talk.religion.misc, alt.atheism
and soc.religion.christian). Panel B: 20 newsgroups prediction on 100 test doc-
uments using ten nearest neighbors based on estimated loadings. Panel C: Document
group prediction based on high level classes with similar subject matter using ten
nearest neighbors based on estimated loadings.

closely related to each other, while others are highly unrelated, we further partition

them into six classes according to subject matter. Then ten nearest neighbors are

used to predict this high level classes of the test data. We obtain an approximately

75.05% accuracy using Hamming loss (Figure 2.11C).

2.7 Discussion and conclusion

In this chapter we have developed a Bayesian group factor analysis model with a hier-

archical prior that induces both column-wise and element-wise sparsity. There exists

a reach literature studying paired or multiple views jointly (e.g. Parkhomenko et al.

(2009); Witten and Tibshirani (2009); Zhao and Li (2012) among others). The line of

interpreting as linear factor analysis models includes the original inter-battery/multi-

battery model (Browne, 1979, 1980), the probabilistic CCA model (Bach and Jordan,
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Table 2.13: First ten words of the group shared factors for six di↵erent newsgroup
classes.

Newsgroup classes First ten shared words Newsgroup classes First ten shared words

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

windows dos

misc.forsale

sale shipping
thanks mac sell ca
graphics go condition wanted

file scsi o↵er thanks
window server forsale edu

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

dod baseball
talk.politics.misc

talk.politics.guns

talk.politics.mideast

government it
car ride israeli israel
bike cars jews gun

motorcycle bmw atf guns
game team firearms batf

sci.crypt

sci.electronics

sci.med

sci.space

clipper henry
talk.religion.misc

alt.atheism

soc.religion.christian

god bible
encryption orbit bible heaven

space people christian sandvik
chip circuit clh faith
digex voltage jesus church

2005), the sparse probabilistic projection (Archambeau and Bach, 2009) and most

recently the BCCA (Klami et al., 2013) and GFA models (Klami et al., 2014a). It

is until recently that the column-wise sparsity (or group-wise sparsity) has been ap-

preciated in this problem, mostly because its e↵ects of decoupling latent variables

from views and adaptively selecting factor numbers. This is mostly due to the work

of the Bayesian version of CCA (Virtanen et al., 2011). Recently sGFA model is

developed to combine column-wise and element-wise sparsity using a combination

of independent ARD priors and a spike-slab prior for column selection. The model

developed in this chapter pushes one step further using a more e↵ective shrinkage

prior and allowing sparse and dense mixture on the factor loadings. Modeling sparse

and dense loadings is very closely related to the problem of low rank and sparse

decomposition of covariance matrices (Chandrasekaran et al., 2009; Candès et al.,

2011; Zhou et al., 2011). With the assumption of full column rank of dense loadings

and one single view, our model provides a Bayesian solution to the low rank/sparse

decomposition problem.

The column-wise shrinkage in BASS is achieved through the top two layers of the

TPB distribution. With current parameter settings, it is equivalent to the standard
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horseshoe prior put on the entire column. The horseshoe prior has been shown to

induce better shrinkage e↵ects compared to the Student-t prior (ARD), the double-

exponential prior (Bayesian lasso) and other similar shrinkage priors, at the same

time maintaining a good computational tractability (Carvalho et al., 2010). In ad-

dition, our local shrinkage induces element-wise sparsity. Combined with the two-

component mixture this allows the dense and sparse factors in any combinations of

views. Shared dense factors could be viewed as supervised low rank decomposition if

we treat one view as labels. Shared sparse factors capture interpretable associations

among variables in di↵erent views. To our knowledge our model BASS is the first

such model that allows di↵erent dense/sparse factor combinations among multiple

views.

We develop EM algorithms to find MAP solutions of our model. The random

initialized EM algorithm is easily stuck in bad initial loading orientations. We fur-

ther develop a fast and robust PX-EM algorithm by introducing expanded rotation

matrix. Our method utilizes the rotation invariance property of likelihood for our

joint factor model (Ročková and George, 2015). Introducing this additional param-

eter greatly facilitates the EM algorithm to escape from bad initializations. The

additional complexity we paid is a single Cholesky decomposition and a matrix mul-

tiplication. We compare original EM, PX-EM and EM with a few MCMC runs as

initialization (MCMC-EM) in simulations. Results show after a few PX-EM runs

our model can find a good orientation that matches our prior favorable structure. In

addition, our PX-EM is faster than the GFA model and sGFA model.

In this study we focus on the interpretation of those models from a factor analysis

point of view. By concatenating all the view matrices, we get a joint factor model. It

has been long appreciated that the problem of limited sample sizes in factor models

(Carvalho et al., 2008). Concatenation of multiple views makes this problem worse

due to that it only increases variables not observations. The structured regularization
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of the joint loading is one necessary approach to provide meaningful solutions. BASS

achieves this through a structured shrinkage prior with fast and robust parameter

estimations.

The extensions of multi-view linear factors models to non-linear or non-Gaussian

models have been studies recently (Salomatin et al., 2009; Damianou et al., 2012;

Klami et al., 2014b; Klami, 2014). The idea of inducing structured sparsity in the

loadings can be analogized in both of the settings. For example, we could consider

more sophisticated Gaussian process kernels in the non-linear models, and formulate

in a structured way. We anticipate such multi-view models would be more popular

in the further.

51



3

MELD - a fast moment estimation approach for

generalized Dirichlet latent variable models

Many modern statistical applications require the analysis of large scale, heteroge-

neous data types including continuous, categorical, and count variables. For ex-

ample, in social science, survey data often consist of collections of di↵erent data

types (e.g., height, gender, and age). In population genetics, researchers are in-

terested in analyzing genotype (integer-valued) and heterogeneous traits of varying

data types. Often data take the form of an n ˆ p matrix Y “ py1, . . . ,yn

q

J, with

y

i

“ py
i1, . . . , yipq

J a p dimensional vector of measurements of varying types for ith

subject with i “ 1, . . . , n.

In this chapter we contribute to the existing literature in two important aspects.

First, we develop a new model for mixed data types. The new model is called general-

ized latent Dirichlet model. Such a model assumes that each subject partially belongs

to k di↵erent components, with mixture proportions of the components following a

Dirichlet distribution. The model has been studied following di↵erent trajectories,

e.g. in population genetics (Pritchard et al., 2000b,a), documents modeling (Blei
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et al., 2003) and contingency table modeling (Bhattacharya and Dunson, 2012).

Those models are also known as mixed membership models, with the name indicating

the partial membership of each subject. A recent book by Airoldi et al. (2014) gives a

comprehensive introduction to this class of models. The generalized latent Dirichlet

model proposed in this chapter extends previous models to allow mixed data types

in a unified modeling framework.

The second contribution of this chapter is that we propose a generalized method

of moments (GMM) approach to estimate parameters for the proposed new model.

In contrast to previous estimation methods such as EM or MCMC algorithms, the

GMM approach developed here does not require initiation of latent variables. This is

achieved by extending the moment tensor methods proposed recently (Anandkumar

et al., 2014b). Our GMM approach distinguishes itself from those moment tensor

methods in multiple ways. First previous methods rely on matrix decomposition

techniques such as singular value decomposition (SVD) or eigenvalue decomposition.

This limitation prevents those methods to estimate an over complete component

parameters, meaning the number of latent components greater than the dimension

of observed variables. Our GMM approach circumvents this limitation and could

be used to the case where the number of components is greater than the dimension

of variables. Second our moment functions are defined as low order (second or

third) heterogeneous polynomials instead of homogeneous polynomials. This allows

us to develop a fast coordinate descent algorithm, which could not be achieved if

homogeneous polynomials are used. We name our approach MELD standing for

Moment Estimation for generalized Latent Dirichlet variable model.

The rest of this chapter is organized as follows. We introduce our generalized

latent Dirichlet variable model in Section 3.1. Some well known existing models are

reviewed and their connections with our new model are discussed in this section. In

Section 3.2 we start with generalized method of moments and introduce the moment
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functions used to perform parameter estimations in our new model. A two stage es-

timation procedure is proposed and a fast coordinate descent algorithm is developed.

In Section 3.3 we demonstrate our approach by multiple simulations. In Section 3.4

we apply our approach to three public available data sets. We conclude this chapter

by a discussion in Section 3.5.

3.1 Generalized latent Dirichlet variable models

In this section we introduce a new generalized latent Dirichlet variable model for

modeling mixed data types.

3.1.1 Modeling mixed data types

We first give a brief review of existing approaches for modeling mixed data types.

The history of modeling mixed data types has been mainly following two paths. One

approach assumes there are latent Gaussian variables behind observations and the

observed variables with mixed data types are manifestations (indicators) of the latent

variables (Muthén, 1983, 1984). Those latent variables are also called latent traits

(Arminger and Küsters, 1988) or liability scores in population genetics literature

(Luo et al., 2001). Those models are routinely used in the social science literature,

focusing almost entirely on the case in which data are categorical or continuous. The

categorical observed variables are resulted by thresholding the latent Gaussian vari-

ables. The well known probit model belongs to this class. Often structural equation

modeling approaches or factor analysis models are used to model the dependence

structure among latent variables (Muthén, 1984; Shi and Lee, 2000; Quinn, 2004).

Most recently Ho↵ (2007) develops an extended rank likelihood approach for mixed

data types using a semiparametric copula model. Latent Gaussian variables are as-

sumed separately from the marginal distributions of observed variables through an

inverse cumulative distribution function (CDF) technique. The approach augments
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the copula model with latent variables that satisfy rank constraints and parameter

estimations are performed using MCMC algorithms. The idea soon gains popularity

and applications and extensions of the original method have been developed (Gruhl

et al., 2013; Murray et al., 2013).

A second approach for modeling mixed data types defines an exponential family

distribution for each of the observed variables. This approach uses theories from

generalized linear models with independent variables (predictors) partially replaced

by latent variables (Sammel et al., 1997; Moustaki and Knott, 2000; Dunson, 2000,

2003). Dependence among observed variables is achieved by assuming certain la-

tent variables are shared across the generalized linear models. Those models are

potentially flexible due to each variable is modeled by its own distribution. However

one limitation is that the latent variables determine both the shape of the marginal

distribution and the dependence structure among observed variables.

3.1.2 Latent Dirichlet variable model with mixed data types

In this subsection we introduce a new model for mixed data types. We call the model

generalized latent Dirichlet variable model. Let y

i

“ py
i1, . . . , yipq

J be a p dimen-

sional observation for subject i. The latent Dirichlet variable model assumes each

variable of y
i

is drawn from a mixture of distributions specified for that particular

variable, and the mixture weights of di↵erent variables for subject i are the same.

Let’s assume there are k latent components. We denote the mixture weight vector

assigned on the k components for subject i as x

i

“ px
i1, . . . , xik

q

J
P �k´1. Here

�k´1 denotes the k ´ 1 probability simplex, indicating the sum over each coordinate

of x
i

being one. Conditional on x

i

, the distribution of jth variable of y
i

is assumed

to be

y
ij

|x

i

„

k

ÿ

h“1

x
ih

g
j

p�

jh

q, (3.1)
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where g
j

p�

jh

q is the density of the jth variable in component h. In this setting, a

pure subject has a weight vector with all zeros except for a single one. We view

the mixture weight x
i

as latent variable. A full likelihood specification is completed

by choosing a population distribution for the latent variable x

i

„ P , with P a

distribution on the simplex �k´1. In this work, we put a Dirichlet distribution on

this latent variable vector x
i

„ Dirp↵q with ↵ “ p↵1, . . . ,↵k

q

J. The resulting model

is called a generalized latent Dirichlet variable model.

The corresponding density g
j

p�

jh

q is absolutely continuous with respect to a

dominating measure p⌦,H, µq, and it is indexed by parameter �

jh

. Currently we

do not specify its parametric form. It could be chosen to belong to the exponential

family. We further let m
i

“ pm
i1, . . .mip

q

J denote a membership vector for subject

i, where m
ij

P t1, . . . , ku indicates the component that y
ij

is generated from. Model

(3.1) can be written in a generative form

y
ij

| m
ij

“ h „ g
j

p�

jh

q,

m
ij

| x

i

„ Multipx
i

q,

x

i

„ Dirp↵q. (3.2)

With specifications of the density function g
j

p�

jh

q, our model reduces to several well

known models, as reviewed below.

Latent Dirichlet allocation

Modeling documents using probabilistic models has a long history. The bag-of-words

model studied by Hofmann (1999) assumes the word in a document follows a mixture

of multinomial distributions. Latent Dirichlet allocation (LDA) (Blei et al., 2003)

extends the model to allow each document has its own mixture weights. One way of

presenting LDA model is

y
ij

|m
ij

“ h „ Multip�
h

q,
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m
ij

|x

i

„ Multipx
i

q,

x

i

„ Dirp↵q. (3.3)

Here y
ij

is the jth position in document i and y

i

“ py
i1, . . . , yipiq

J is a document

with p
i

positions. We distinguish position in a document from a word in the sense

that a word is reserved for indicating a unit in a vocabulary. Two words are of

di↵erent types. Instead a position is a realization of a word in a document and

two positions could take the same word. �

h

is a probability vector over the whole

vocabulary specified for hth component. x
i

is the mixture weights over k components

for ith document. To complete the model we assign a Poisson distribution over the

total number of positions p
i

in document i. The number of categories y
ij

could

take, say d, equals to the number of words in the vocabulary. Since �

h

defines a

multinomial distribution over the vocabulary, it is interpreted as a topic (Blei et al.,

2003). Another way of interpreting the LDA model is to use Poisson distributions.

This is because for d independent Poisson variables n1, . . . , nd

with rate �
c

for c “

1, . . . , d, conditional on the total, their distribution is equivalent to a multinomial

distribution Multipn0,⇡q with n0 “

∞

c

n
c

and ⇡ “ p�1, . . . ,�d

q

J
{p

∞

c

�
c

q. Therefore

the LDA model could also be written as

y
ij

|m
ij

“ h „ Poissonp�
jh

q,

m
ij

|x

i

„ Multipx
i

q,

x

i

„ Dirp↵q. (3.4)

Here y
ij

is the number of counts of jth word in document i and y

i

“ py
i1, . . . , yidq

J is

a summary of word counts. �
jh

is a scalar indicating the Poisson rate for jth word in

topic h. When we are not interested in modeling the total positions in a document,

above two models are equivalent.
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Admixture model in population genetics

The multilocus admixture model proposed in population genetics literature has the

similar idea as the LDA model (Pritchard et al., 2000b). In the original paper, the

genotype data of n dipoid individuals at p loci are modeled. Let yp1q
ij

and yp2q
ij

denote

the genotype of ith individual at locus j. Because there are two chromosomes in a

dipoid individual, each of which is originated from one parent, therefore the ordered

pair (yp1q
ij

, yp2q
ij

) is used to denote the genotype. When such pairs are not observed,

we could use phasing methods to estimate the haplotype (Browning and Browning,

2011) and then obtain such pairs. Assuming (yp1q
ij

, yp2q
ij

) is known, the admixture

model proposed by Pritchard et al. (2000b) assumes

yp¨q
ij

|mp¨q
ij

“ h „ Multip�
jh

q,

mp¨q
ij

|x

i

„ Multipx
i

q,

x

i

„ Dirp↵q. (3.5)

This model assumes the two copies of the genotype at jth locus for individual i have

their own membership variables. yp¨q
ij

at both copies could take d
j

di↵erent values,

where d
j

equals to the number of possible alleles at locus j. �

jh

is the genotype

distribution for jth locus in population h. Its dimension equals to d
j

. For example,

when single nucleotide polymorphism (SNP) data are studied, d
j

“ 2 and yp¨q
ij

could

take p0, 1q two values, meaning missing or existing of a particular reference allele. If

we further assume Hardy-Weinberg equilibrium, meaning that the two copies of the

allele are independently inherited from the two parents with a common population

frequency, we could re-write the model by letting y
ij

“ yp1q
ij

` yp2q
ij

as

y
ij

|m
ij

“ h „ Binomialp2,�
jh

q,

m
ij

|x

i

„ Multipx
i

q,

x

i

„ Dirp↵q. (3.6)
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Here �
jh

indicates the reference allele frequency in population h at locus j.

Simplex factor model for contingency tables

The simplex factor model proposed by Bhattacharya and Dunson (2012) for con-

tingency table modeling also could be written in a similar manner. We first intro-

duce some basic concepts in modeling of contingency tables. For n observations

of a p dimensional categorical vector y

i

“ py
i1, . . . , yipq

J with y
ij

P t1, . . . , d
j

u for

i “ 1, . . . , n, the data could be formulated into a p way contingency table of dimension

d1 ˆ d2 ¨ ¨ ¨ ˆ d
p

(Dunson and Xing, 2009). Let c “ pc1, . . . , cpq

J with c
j

P t1, . . . , d
j

u,

researchers are interested in modeling the probability of ⇡
c

“ Prpy
i

“ cq “ Prpy
i1 “

c1, . . . , yip “ c
p

q, which is the probability of observing a particular cell in the p way

table. We have
∞

c

⇡
c

“ 1 where the summation is taken over all cells in the table.

Dunson and Xing (2009) call ⇡ “ t⇡
c

u a probability tensor. Modeling contingency

table becomes finding a parsimonious way to represent the probability tensor.

The simplex factor model proposed by Bhattacharya and Dunson (2012) assumes

Prpy
ij

“ c
j

|x

i

,�
j

q “

k

ÿ

h“1

x
ih

�
jhcj ,

where �
j

“ p�

j1, . . . ,�jk

q is the collection of probability vectors for jth variable in

the k latent components. x

i

is a Dirichlet latent variable in k ´ 1 simplex �k´1.

The authors show that this model can be viewed as a Tucker decomposition of the

probability tensor ⇡

⇡
c

“

ª

p

π

j“1

Prpy
ij

“ c
j

|x

i

,�
j

qdP px

i

q “

k

ÿ

h1“1

. . .
k

ÿ

hp“1

g
h1,...,hp

p

π

j“1

�
jhjcj .

The arms in the decomposition correspond to �

jh

’s for the component distributions.

The core tensor depends on the distribution assumption on the latent Dirichlet vari-

able P px

i

q. By augmenting the simplex factor model with membership variable m
ij

,
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we get an equivalent representation

y
ij

|m
ij

“ h „ Multip�
jh

q,

m
ij

|x

i

„ Multipx
i

q,

x

i

„ Dirp↵q. (3.7)

To sum up, the models reviewed above in (3.3), (3.4), (3.5), (3.6) and (3.7) can

be thought of as special forms of our model in (3.2). Model (3.2) generalizes the

traditional mixed membership models to allow mixed data types. The parameters

� “ t�

jh

u1§j§p,1§h§k

are mixture component parameters shared by all subjects.

3.2 Generalized method of moments for parameter estimation

With n independent samples Y “ py1, . . . ,yn

q from model (3.2), we can write fol-

lowing likelihood after marginalizing over the latent Dirichlet variables

ppY | ↵,�q “

n

π

i“1

„

ª

p

π

j“1

ˆ

k

ÿ

h“1

x
ih

g
j

py
ij

| �

jh

q

˙

dP px

i

q

⇢

.

One can choose a specific form of the component distribution g
j

py
ij

| �

jh

q for

each of the jth variable. Then a complete likelihood can be obtained by augmenting

the model with membership variables M “ tm
ij

u1§i§n,1§j§p

. Parameter estimation

can be done using EM or MCMC algorithms. Those algorithms alternate between

updating latent variables, membership variables and population parameters, which

inevitably leads to slow convergence, ine�ciency and instability.

In this chapter we are going to use method of moments, particularly generalized

method of moments (GMM), to perform parameter estimation in model (3.2). Our

GMM does not require initiation of latent variables. In addition in using GMM we

do not need to specify a distributional form for g
j

py
ij

| �

jh

q. Instead, only cer-

tain moments are required for parameter estimation. Our GMM is related to recent

moment tensor methods developed for latent variable models including mixture of
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Gaussians, hidden Markov models, mixed membership models, and stochastic block

models (Arora et al., 2012; Anandkumar et al., 2012a,b; Hsu and Kakade, 2013;

Anandkumar et al., 2014a,b). However our GMM is di↵erent from previous meth-

ods in that heterogeneous low order polynomials are used instead of homogeneous

polynomials.

In this section we first review moment methods in parameter estimation. Then

we introduce the moment functions and the quadratic objectives for our generalized

latent Dirichlet model (3.2).

3.2.1 A brief summary of generalized method of moments

Using the method of moments (MM) to perform parameter estimation has a long

history, dating back to Pearson’s method to estimate a mixture of two Gaussian

distributions (Pearson, 1894). The idea behind MM is to derive a list of moment

functions that have expectation of zero at the true parameter values. For a set

of observations y

i

with i “ 1, . . . , n, MM specifies ` moment functions to form a

moment vector fpy

i

,✓q “ pf1pyi

,✓q, . . . , f
`

py

i

,✓qq

J satisfying Erfpy

i

,✓qs “ 0 at the

true parameter ✓ “ ✓0 P ⇥ Ñ Rp. A parameter estimate can be found by solving

the ` sample equations with p unknowns

p

✓ such that f
n

p✓q ”

1

n

n

ÿ

i“1

fpy

i

,✓q “ 0 at p

✓. (3.8)

When fpy

i

,✓q is linear in ✓ (e.g., linear regression with instrumental variables) with

independent moment conditions and ` “ p, then ✓ can be uniquely determined.

When ` ° p, the system in (3.8) might be over-determined, in which case standard

MM cannot be applied.

Generalized method of moments (GMM) addresses this problem by minimizing

the following quadratic equation

p

✓ ” argmin
✓

“

Q
n

p✓;A
n

q “ f

n

p✓q

J
A

n

f

n

p✓q

‰

, (3.9)
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whereA
n

is a positive semidefinite weight matrix. Hansen establishes the asymptotic

theory of GMM estimators (Hansen, 1982). The e�ciencies of GMM estimators are

shown to depend on the weight matrix. The asymptotically optimal weight matrix

can be chosen such that

A

´1
n

“ S

n

“ Varrn1{2
f

n

p✓qs.

Hansen proposes a two stage estimation procedure in which an initial estimate of p

✓ is

found using a suboptimal weight matrix, such as the identity. This initial parameter

estimate is then used to calculate the weight matrix A

n

. This updated matrix is

then used in (3.9) to obtain the final parameter estimate (Hall, 2005). Consistency

and asymptotic normality of GMM has been studied by Hansen (1982).

Methods of applications of GMM to latent variable models with structural as-

sumptions also have a long history. Those methods match certain sample moment

statistics to their population counterparts. Minimizing their weighted distance gen-

erates a generalized least square estimator (Browne, 1973; Bentler, 1983; Anderson

and Gerbing, 1988). Although those methods are called generalized least square

methods, they share the same idea with the GMM estimator. More recently, Gallant

et al. (2013) apply GMM to a specific class of latent variable models by defining

moment conditions based on the complete data, including the latent variables. In

contrast, Bollen et al. (2014) rely on a model-implied instrumental variable to find a

GMM estimator. Generally, current GMM approaches focus on latent variable mod-

els that satisfy restrictive assumptions or require the instantiation of latent variables

in a computationally intensive estimation algorithm.

3.2.2 Moment functions in MELD

In this subsection we describe the GMM developed for your generalized latent Dirich-

let variable models. Applying GMM to all of the parameters in model (3.2) is not

feasible due to the massive dimensionality of the parameter space. Higher-order
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moment functions are complex and involve large numbers of unknowns. They are

also unstable often with large variances. We will build on the moment tensor meth-

ods established recently and define moment functions that depend on lower order

moments.

A series of recent work about using moment tensors to estimate parameters in

latent variable models have been proposed. Hsu et al. (2012); Anandkumar et al.

(2012a,b) are believed to be first papers using methods of moments with third order

moment tensor to perform parameter estimation. The authors show that second

order moment matrix and third order moment tensor have a decomposable form for

certain latent variable models including hidden Markov model, independent compo-

nent analysis and latent Dirichlet allocation model. Parameter estimation is con-

ducted by first projecting the third order moment tensor to a matrix and then using

singular value decompositions (SVD’s) to the projected matrix and the original sec-

ond order moment matrix. Model parameters can be recovered from the singular

values/vectors. Arora et al. (2012) extend the SVD approach to nonnegative matrix

factorization (NMF). Hsu and Kakade (2013) develop a method of moments for mix-

ture of spherical Gaussians. Anandkumar et al. (2014a) study the stochastic block

model using the similar idea. Anandkumar et al. (2014b) further establish tensor

power methods for parameter estimations using moment tensors. The moment tensor

approach o↵ers substantial computational advantages over other methods, as illus-

trated in various applications (Tung and Smola, 2014; Anandkumar et al., 2014a;

Colombo and Vlassis, 2015).

We now state the GMM developed in this chapter. Recall that y
ij

is the jth

variable for subject i, which may include various data types, including continuous,

categorical, or count data. We encode y
ij

as follows. When y
ij

is a categorical

variable, it is represented as a binary vector b
ij

, where the c
j

th coordinate is set to

one and all others are zero, where c
j

is the category of observation y
ij

. If y
ij

is a
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non-categorical variable, then b

ij

” y
ij

is a scalar value. The variable b

ij

represents

y
ij

with mixed data types in the moment functions. In the following, we assume

that there are k latent components and that the latent Dirichlet variable x

i

follows

a Dirichlet distribution with parameter ↵ “ p↵1, ...,↵k

q

J. We let ↵0 “

∞

k

h“1 ↵h

. We

let �
jh

denote the mean parameter of b
ij

in component h

�

jh

“ Epb

ij

|m
ij

“ hq.

When y
ij

is categorical, �
jh

is a vector. When y
ij

is a scalar, �
jh

is also a scalar.

We define the following two types of moment functions

F

p2q
jt

py

i

,�q “ b

ij

˝ b

it

´

↵0

↵0 ` 1
µ

j

˝ µ

t

´�
j

⇤p2q�J
t

, (3.10)

1 § j, t § p, j ‰ t

F

p3q
jst

py

i

,�q “ b

ij

˝ b

is

˝ b

it

´

↵0

↵0 ` 2

ˆ

b

ij

˝ b

is

˝ µ

t

` µ

j

˝ b

is

˝ b

it

` b

ij

˝ µ

s

˝ b

it

˙

`

2↵2
0

p↵0 ` 1qp↵0 ` 2q

µ

j

˝ µ

s

˝ µ

t

´⇤p3q
ˆ1 �j

ˆ2 �s

ˆ3 �t

, (3.11)

1 § j, s, t § p, j ‰ s ‰ t.

Here µ

j

“ Epb

ij

q “ �
j

↵{↵0 for j “ 1, . . . , p. ⇤p2q
“ diag

`

↵{r↵0p↵0 ` 1qs

˘

and

⇤p3q is a three-way diagonal tensor with �p3q
h

“ 2↵
h

{r↵0p↵0 ` 1qp↵0 ` 2qs on the

diagonal for h “ 1, . . . , k. We use ˝ to denote an outer product, and use ˆ

s

to

indicate multiplication of a tensor with a matrix for mode s. The second moment

function F

p2q
jt

py

i

,�q is a d
j

ˆ d
t

matrix, and the third moment function F

p3q
jst

py

i

,�q

is a d
j

ˆ d
s

ˆ d
t

tensor. We set d
j

“ 1 when the jth variable is non-categorical.

The following theorem states that, at the true parameter value, the expectations

of the moment functions are zero. The proof can be found in Appendix B.1.
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Theorem 3.1 (Moment conditions in MELD). The expectations of the second mo-

ment matrix F

p2q
jt

py

i

,�q and third moment tensor F

p3q
jst

py

i

,�q defined in (3.10) and

(3.11) are zero at true model parameter values �0

ErF

p2q
jt

py

i

,�0qs “ 0, ErF

p3q
jst

py

i

,�0qs “ 0.

3.2.3 Two stage optimal estimation

We will use the two types of moment functions in (3.10) and (3.11) in Hansen’s two

stage optimal GMM estimation procedure. We re-state Hansen’s two stage GMM

estimation procedure as follows

(1) Estimate p

✓ “ argmin
✓

“

Q
n

p✓; Iq “ f

n

p✓q

J
f

n

p✓q

‰

.

(2) Given p

✓ calculate S

n

and set A
n

“ S

´1
n

.

(3) Compute p

✓ “ argmin
✓

“

Q
n

p✓;A
n

q “ f

n

p✓q

J
A

n

f

n

p✓q

‰

as final estimator.

Based on F

p2q
jt

py

i

,�q and F

p3q
jst

py

i

,�q, we now define two versions of moment

vectors by stacking the second moment matrices and third moment tensors

f

p2q
py

i

,�q “

ˆ

vecrF p2q
12 py

i

,�qs

J, . . . , vecrF p2q
1p py

i

,�qs

J,

vecrF p2q
23 py

i

,�qs

J, . . . , vecrF p2q
2p py

i

,�qs

J, . . . , vecrF p2q
p´1,ppy

i

,�qs

J
˙J

. (3.12)

f

p3q
py

i

,�q “

ˆ

vecrF p2q
12 py

i

,�qs

J, . . . , vecrF p2q
p´1,ppy

i

,�qs

J,

vecrF p3q
123py

i

,�qs

J, . . . , vecrF p3q
12ppy

i

,�qs

J,

vecrF p3q
134py

i

,�qs

J, . . . , vecrF p3q
13ppy

i

,�qs

J . . . , vecrF p3q
p´2,p´1,ppy

i

,�qs

J
˙J

.. (3.13)

The first version of moment vector f p2q
py

i

,�q depends on second moment matrices

and the second version of moment vector f p3q
py

i

,�q depends on both second moment
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matrices and third moment tensors. The vectorized moment matrices and tensors

are ordered in a way that the subscript index on the right side runs faster than the

subscript index on the left. The second moment matrix F

p2q
jt

py

i

,�q is symmetric, so

we only need to consider the matrices with j † t in the moment vectors. Assuming d

levels for y
i

results in a moment vector of dimension ppp´1qd2{2. The third moment

tensor F

p3q
jst

py

i

,�q is also symmetric with respect to its indices, so we only include

moment tensors with j † s † t when f

p3q
py

i

,�q is formed. The dimension of the

second version of moment vector is ppp ´ 1qd2{2 ` rp3 ´ 3ppp ´ 1q ´ ps d3{6.

We now state the quadratic functions we use for parameter estimation as follows

Qp2q
n

p�;Ap2q
n

q “ f

p2q
n

p�q

J
A

p2q
n

f

p2q
n

p�q, (3.14)

Qp3q
n

p�;Ap3q
n

q “ f

p3q
n

p�q

J
A

p3q
n

f

p3q
n

p�q, (3.15)

where f

p2q
n

p�q and f

p3q
n

p�q are sample estimates of the expectations of the moment

vectors

f

p2q
n

p�q “

1

n

n

ÿ

i“1

f

p2q
py

i

,�q, f

p3q
n

p�q “

1

n

n

ÿ

i“1

f

p3q
py

i

,�q,

andA

p2q
n

andA

p3q
n

are two positive semidefinite matrices. When we calculate f p2q
n

p�q,

µ

j

and µ

t

in f

p2q
py

i

,�q are replaced by their sample estimates

p

µ

j

“

1

n

n

ÿ

i“1

b

ij

, p

µ

t

“

1

n

n

ÿ

i“1

b

it

,

instead of their parametric counterparts �
j

↵{↵0 and �t

↵{↵0 respectively. Similarly

p

µ

j

, p

µ

s

and p

µ

t

are used in f

p3q
py

i

,�q for calculating f

p3q
n

p�q. Avoiding using their

parametric forms allows us to develop a fast coordinate descent algorithm for GMM

estimation.

In the first stage, we set Ap¨q
n

to an identity matrix. Then the quadratic functions

in (3.14) and (3.15) can be re-written as follows

Qp2q
n

p�, Iq “

p´1
ÿ

j“1

p

ÿ

t“j`1

||F

p2q
n,jt

p�q||

2
F

,
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Qp3q
n

p�, Iq “

p´1
ÿ

j“1

p

ÿ

t“j`1

||F

p2q
n,jt

p�q||

2
F

`

p´2
ÿ

j“1

p´1
ÿ

s“j`1

p

ÿ

t“s`1

||F

p3q
n,jst

p�q||

2
F

,

where F p2q
n,jt

p�q and F

p3q
n,jst

p�q are sample estimates of the expectations of the second

moment matrix and third moment tensor with µ

j

, µ
s

and µ

t

replaced by p

µ

j

, p

µ

s

and

p

µ

t

, and || ¨ ||

2
F

indicates the Frobenius norm, the element-wise sum of squares.

We obtain a first stage estimator of � by minimizing the quadratic forms using

Newton-Raphson. Note that only the last term of F p2q
n,jt

p�q and F

p3q
n,jst

p�q involves

unknown parameter �. For simplicity we denote

E

p2q
n,jt

“ F

p2q
n,jt

p�q `�
j

⇤p2q�J
t

, (3.16)

E

p3q
n,jst

“ F

p3q
n,jst

p�q `⇤p3q
ˆ1 �j

ˆ2 �s

ˆ3 �t

. (3.17)

Note that Ep2q
n,jt

and E

p3q
n,jst

can be computed directly from the samples. We optimize

�

jh

with other mean parameters fixed. After calculating the gradient and Hessian

of Qp2q
p�

jh

, Iq, the update rule simply becomes

�

s

jh

“

p

∞

t“1,t‰j

pE

p2q
n,jt

�

th

q

J

p�p2q
h

q

p

∞

t“1,t‰j

�

J
th

�

th

, (3.18)

where E
p2q
n,jt

“ E

p2q
n,jt

´

∞

h

1‰h

�p2q
h

1 �
jh

1
˝ �

th

1 and �p2q
h

is the hth diagonal entry of ⇤p2q.

The update rule for �
jh

with Qp3q
p�

jh

, Iq can be calculated as

�

s

jh

“

�p2q
h

p

∞

t“1,t‰j

pE

p2q
n,jt

�

th

q

J
` �p3q

h

p

∞

s“1,s‰j

„

p

∞

t“1,t‰s,t‰j

pE

p3q
n,jst

ˆ2 �sh

ˆ3 �th

q

J
⇢

p�p2q
h

q

2
p

∞

t“1,t‰j

�

J
th

�

th

` p�p3q
h

q

2
p

∞

s“1,s‰j

„

p

∞

t“1,t‰s,t‰j

p�

J
sh

�

sh

qp�

J
th

�

th

q

⇢ ,

(3.19)

whereE
p3q
n,jst

“ E

p3q
n,jst

´

∞

h

1‰h

�p3q
h

1 �
jh

1
˝�

sh

1
˝�

th

1 . �p3q
h

is the hth diagonal entry of⇤p3q.

The derivations can be found in Appendix B.5. After updating �

jh

using the above

67



equations, we retract �
jh

to its probability simplex when y
ij

is a categorical variable.

We use the di↵erence of the objective function between two iterations divided by the

dimension of the moment vector to determine convergence. In particular, we stop

iterations when this value is smaller than 1 ˆ 10´5.

After an initial consistent estimate of � is found, we calculate the asymptotic

covariance matrix of moment functions Sp¨q
n

and define a new weight matrix A

p¨q
n

“

pS

p¨q
n

q

´1 for a second stage GMM estimation. The form of Sp¨q
n

can be derived an-

alytically, and we provide the results in the Appendix B.6. In our implementation,

the calculation of Ap¨q
n

requires the inversion of a full-rank dense matrix S

p¨q
n

with

dimension scaling as Opp2d2q for f p2q
n

p�q and Opp3d3q for f p3q
n

p�q. In addition, when

including the o↵-diagonal entries in the weight matrix, the updating rules become

intrinsically complicated. In practice, we only extract the diagonal elements of Sp¨q
n

and let Ap¨q
n

“ 1{diagrpS

p¨q
n

qs in the second stage estimation. This approximation has

been used in previous GMM implementations (Jöreskog and Sörbom, 1987). The

gradient descent update equations can be found by slight modification of (3.18) and

(3.19) with weights included.

Note that the moment functions do not solve the identifiability problems with

respect to �. When ↵ is a constant vector, any permutation ⌧ of 1, . . . , k with

�
j

p⌧q “ p�

j⌧p1q, . . . ,�j⌧pkqq for all j “ 1, . . . , p satisfies the moment condition. This

problem is inherited from the label switching problem in mixture models. A similar

situation occurs when there are ties in ↵ and the permutation is restricted to each tie.

However, in real world applications, a minimizer of the quadratic function is generally

su�cient to find a parameter estimate that is close to a unique configuration of the

true parameter.

68



Properties of parameter estimates

We use GMM asymptotic theory to show that parameter estimate in MELD is consis-

tent. We assume the following regularity conditions on f

p¨q
py

i

,�q and the parameter

space ⇥.

Assumption 3.1 (Regularity conditions (Assumption 3.2, 3.9 and 3.10. (Hall,

2005))). 1) f

p¨q
py

i

,�q is continuous on ⇥ for all y
i

P Y; 2) Erf

p¨q
py

i

,�qs † 8

and continuous for � P ⇥; 3) ⇥ is compact and Ersup�P⇥||f

p¨q
py

i

,�q||s † 8.

Remark 3.1. Conditions 1) and 2) are satisfied in MELD. Condition 3) is also sat-

isfied, noting that �

jh

P �dj´1
Ä Rdj is compact for categorical variables. For a

non-categorical variable, we could restrict our parameter space to a large compact

domain such as closed intervals across the real line without sacrificing practical per-

formance.

With these conditions, we further assume that the weight matrix A

p¨q
n

converges

to a positive definite matrix A

p¨q in probability. We define the population analogs of

the quadratic functions as

Qp2q
0 p�;Ap2q

q “ Erf

p2q
py

i

,�qs

J
A

p2qErf

p2q
py

i

,�qs, (3.20)

Qp3q
0 p�;Ap3q

q “ Erf

p3q
py

i

,�qs

J
A

p3qErf

p3q
py

i

,�qs. (3.21)

We have the following lemma showing the uniform convergence of Qp¨q
n

p�;Ap¨q
n

q.

Lemma 3.1 (Uniform convergence (Lemma 3.1 (Hall, 2005))). Under regularity

conditions in Assumption 3.1,

sup
�P⇥

|Qp2q
n

p�;Ap2q
n

q ´ Qp2q
0 p�;Ap2q

q|

p

Ñ 0 sup
�P⇥

|Qp3q
n

p�;Ap3q
n

q ´ Qp3q
0 p�;Ap3q

q|

p

Ñ 0,

Theorem 3.2 (Consistency). Under the same conditions in Lemma 3.1, the es-

timator p�p2q that minimizes Qp2q
n

p�;Ap2q
n

q converges to the true parameter �0 in

probability. A similar result holds for p�p3q that minimizes Qp3q
n

p�;Ap3q
n

q.
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The proof can be found in Appendix B.2. Briefly, following Hall (2005), we first

show that p�p¨q minimizes Qp¨q
0 p�;Ap¨q

q with probability one as n Ñ 8. Then the

theorem can be proved.

The asymptotic normality of p�p2q and p�p3q can also be established by assuming

the following conditions on Bf

p¨q
py

i

,�q{B�.

Assumption 3.2 (Conditions on Bf

p¨q
py

i

,�q{B� (Assumptions 3.5, 3.12 and 3.13.

(Hall, 2005))). 1) Bf

p¨q
py

i

,�q{B� exists and is continuous on ⇥ for all y
i

P Y;

2) �0 is an interior point of ⇥; 3) ErBf

p¨q
py

i

,�q{B�s “ G

p¨q
0 p�q † 8; 4) Gp¨q

0 p�q is

continuous on some neighborhood N
✏

of �0; 5) the sample estimate Gp¨q
n

p�q uniformly

converges to G

p¨q
0 p�q.

Remark 3.2. We derive Bf

p¨q
py

i

,�q{B� in Appendix B.4. Conditions 1, 3, and 4 are

satisfied in MELD. Condition 5 can be shown with continuousness of the derivative

and the compactness of ⇥.

Theorem 3.3 (Asymptotic normality). With Assumptions 3.1 and 3.2, we have

n1{2
ˆ

vecp

p�p¨q
q ´ vecp�0q

˙

p

Ñ N

ˆ

0,M p¨q
S

p¨q
pM

p¨q
q

J
˙

with

M

p¨q
“ rpG

p¨q
0 q

J
A

p¨q
G

p¨q
0 s

´1
pG

p¨q
0 q

J
A

p¨q,

where G

p¨q
0 “ ErBf

p¨q
py

i

,�q{B�s|�“�0 and S

p¨q
“ lim

nÑ8 Varrn1{2
p

f

p¨q
n

p�0qs. The

proof can be found in Appendix B.3. The optimal estimator can be obtained so that

the weight matrix A

p¨q
n

Ñ A

p¨q
“ pS

p¨q
q

´1 (Hansen, 1982).

Recovering membership variables

Given an estimate of the parameter p�, we can calculate estimate of membership

allocation m
ij

for each y
ij

. For categorical variables, we find the tm
ij

u that maximize

t pm
ij

u “ argmax
tmiju

ˆ

p

π

j“1

n

π

i“1

k

π

h“1

p�
1pmij“hq
jhyij

˙

. (3.22)
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Here 1 is the indicator function. The solution can be calculated using

pm
ij

“ argmax
h

p

p�
jhyijq for h “ 1, . . . , k.

For non-categorical variables, we find the tm
ij

u that minimizes the distance metric

pm
ij

“ argmin
h

Dp

p�
jh

, y
ij

q for h “ 1, . . . , k. (3.23)

The negative log density is a natural metric. Once the tm
ij

u are allocated, subject

mixture proportion x

i

can be estimated from those membership variables.

3.2.4 Model selection using goodness of fit tests

We discuss how to choose the value of k in this subsection using goodness of fit tests.

With the optimal weight matrix A

p¨q
n

Ñ pS

p¨q
q

´1, the values of the objective function

can be used to construct tests similar to the classical trio tests in the maximum

likelihood (ML) context: the Wald, Lagrange multiplier (score) and likelihood ratio

tests (Newey and West, 1987). Under the null those test statistics asymptotically

follow a chi-squared distribution. We could construct a sequence of test statistics

under di↵erent values of k to access the goodness of fit in MELD. However this

approach requires the calculations of optimal weight matrices and needs large matrix

inversions. We avoid this approach in following analysis. Alternatively we assess the

goodness of fit using two methods, one is an information criterion based on complete

likelihood, the integrated complete likelihood (ICL) (Biernacki et al., 2000), and one

is a fitness index proposed by Bentler (1983). Both of the methods do not require

calculation of optimal weight matrices.

The ICL method is similar to the classical Bayesian information criterion (BIC)

which approximates the integrated likelihood (Schwarz, 1978). However ICL does

not require integration of latent variables to get a marginal likelihood. Instead it

is based on complete likelihood. Write the integrated likelihood of complete data
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pY ,Mq (Biernacki et al., 2000) in MELD

ppY ,M |k,↵q “

ª

�

ˆ

n

π

i“1

ª

xi

ppy

i

,m
i

|�,x
i

qpp�,x
i

|k,↵qdx
i

˙

d�

“

ª

�

ppY |M ,�qpp�|kqd�ˆ

n

π

i“1

ª

xi

ppm

i

|x

i

qppx

i

|k,↵qdx
i

, (3.24)

where m

i

“ pm1i, . . . ,mpi

q

J. The first term in the right hand side of (3.24) can

be computed by assigning � a prior distribution pp�|kq. When the data are all

categorical, this term can be calculated in a closed form with a prior �
jh

„ Dirp�
j

q

ª

�

ppY |M ,�qpp�|kqd� “

p

π

j“1

k

π

h“1

±

dj

cj“1 �po
jhcj ` �

cjq

�p

∞

cj
o
jhcj `

∞

cj
�
cjq

�p

∞

cj
�
cjq

±

dj

cj“1 �p�
cjq

,

where o
jhcj is the number of subjects with jth variable taking c

j

th category and

belonging to hth component, and �p¨q is the gamma function. When the closed form

integration does not exist, we use BIC to approximate the logarithm of the term,

generating

log ppY |M , kq « max
�

log ppY |M ,�, kq ´

⌫

2
logpnq.

Here ⌫ is the number of free parameters in �. The second term in (3.24) has a closed

form solution in MELD
n

π

i“1

ª

xi

ppm

i

|x

i

qppx

i

|k,↵qdx
i

“

n

π

i“1

ˆ

�p↵0q

±

k

h“1 �p↵
h

q

±

k

h“1 �pn
ih

` ↵
h

q

�pp ` ↵0q

˙

,

where n
ih

is the number of variables belonging to component h in subject i. In our

GMM framework we plugin our GMM estimator p� and the recovered membership

variable x

M to get following ICL criterion

ICL “ ´2 logpY |

x

M , p�, kq ` ⌫ logpnq ´ 2Kp

x

Mq, (3.25)

where

Kp

x

Mq “ n log�p↵0q `

n

ÿ

i“1

k

ÿ

h“1

log�ppn
ih

` ↵
h

q ´ n
k

ÿ

h“1

log�p↵
h

q ´ n log�pp ` ↵0q.
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The ICL can be viewed as follows. The first two terms in the right hand side of

(3.25) is a penalized likelihood assuming the membership variables are known. The

last term introduces an additional penalty to penalize the fitness of the membership

variables. It has been shown to generate good model selection behavior in mixture

of Gaussians (Steele and Raftery, 2010). Small values of ICL suggest good fit.

As a second method, we use the fitness index (FI) proposed by Bentler (1983).

The FI is based on the value of the objective function evaluated at parameter estimate

and it is defined as

FI “ 1 ´

Qp¨q
n

p

p�p¨q,Ap¨q
n

q

pe

p¨q
n

q

J
A

p¨q
n

e

p¨q
n

, (3.26)

where e

p¨q
n

is the vectorization of Ep2q
n,jt

for j † t or Ep3q
n,jst

for j † s † t. This fitness

index is for any weight matrix A

p¨q
n

. It can be viewed as a normalized objective

function and its value is smaller than one. Large values of FI suggest good fit.

In our simulations, which will be shown in detail in Section 3.3, we find the ICL

criterion favors small model greatly. Therefore only the results of using FI are shown.

3.2.5 Computational complexity

The calculation of the moment statistics and the weight matrices are performed

once. The complexity of calculating E

p2q
n,jt

for all j, t requires accessing all the data,

and has complexity Opp2nq. Similarly, calculating E

p3q
n,jst

for all j, s, t requires Opp3nq

complexity. The calculation of the optimal weight matrix for f p2q
n

p�q requires Opp2kq

and for f

p3q
n

p�q it requires Opp3kq. We now discuss the computational complexity

of MELD per iteration. For simplicity, we assume that the number of levels of

y
ij

are fixed across dimensions. For the first version of our GMM with objective

function Qp2q
n

p�, Iq, each Newton-Raphson update has complexity Oppq. Thus, the

total complexity for each iteration is Opp2kq. For our second version of GMM with
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objective function Qp3q
n

p�, Iq, each Newton-Raphson update takes Opp2q, thus the

overall complexity is Opp3kq.

We now analyze the number of moment functions and number of free parameters

in MELD. Assuming the number of levels d of y
ij

is the same across dimensions,

the number of free parameters in � is pkpd ´ 1q. The number of moment functions

using Qp2q
n

p�, Iq is ppp ´ 1qd2{2. When ppp ´ 1qd2{2 ° pkpd ´ 1q, the moment

vector f

p2q
n

p�q provide su�cient restrictions satisfying its expected first derivative

Gp2q
0 p�q of full column rank, and the GMM estimator is consistent. For example,

when d “ 5 and k “ 4, we need p ° 2 to provide consistent estimators. When we

include third moment tensors in the moment vector f p3q
n

p�q, the number of moment

functions becomes rp3 ´ 3ppp ´ 1q ´ psd3{6 ` ppp ´ 1qd2{2, which scales with Opp3q.

Our second version of GMM includes additional moment restrictions, and hence is

more e�cient compared to our first version of GMM estimators, as shown in our

simulation studies. However, the tradeo↵ is increased computational complexity and

decreased robustness to violations of model assumptions.

One notable feature of our GMM algorithms is that, after passing through all of

the samples and calculating certain moment statistics, parameter estimations only

depend on the two quantities E

p2q
n,jt

and E

p3q
n,jst

. This feature allows our method to

perform fast parameter estimations when applied to modern data sets with large

sample sizes because we only need to scan all of the samples once.

3.3 Simulations

In this section, we evaluate the accuracy and run time of MELD in simulations with

both categorical and mixed data types. We use two stage estimations described in

previous sections. In the first stage an identity weight matrix is used. In second

stage we set Ap¨q
n

“ 1{diagrpS

p¨q
n

qs. For notation convenience we suppress the weight
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matrix A

p¨q and subscript n in the objective functions Qp¨q
n

p�,Ap¨q
q.

3.3.1 Categorical data

For simulations with categorical data, we consider two settings: 1) a low dimen-

sional setting (p “ 20) so that both second and third order moment functions may

be e�ciently calculated; 2) a moderate dimensional setting (p “ 100) to estimate

population structure of genomic data under Hardy-Weinberg equilibrium (HWE)

and non-HWE.

Low dimensional simulations We simulate p “ 20 categorical variables in this setting,

each with d “ 4 levels. We set the number of components to k “ 3 and generate

�

jh

from Dirp0.5, 0.5, 0.5, 0.5q with h “ 1, . . . , k. ↵ is set to p0.1, 0.1, 0.1q

J. We

draw n “ t50, 100, 200, 500, 1, 000u samples from the generative model in equation

(3.2) with g
j

p�

jh

q a multinomial distribution. For each value of n, we generate

ten independent data sets. We run MELD for di↵erent values of k “ t1, . . . , 5u.

The FI criterion consistently chooses the correct number of latent components k

in first stage estimation with both Qp2q
p�q and Qp3q

p�q (Table 3.1). For second

stage, FI does not perform well. It overestimates the number of components with

Qp2q
p�q and simulations under n “ 50, 100 with Qp3q

p�q. For larger sample sizes,

FI underestimates the number of comoponents with Qp3q
p�q. The trajectories of

the objective functions under di↵erent values of k are shown in Figure 3.1. The

convergence of parameter estimations on the ten simulated data sets under n “ 1, 000

and k “ 3 is shown in Figure 3.2. MELD converged in about 25 iterations with

Qp2q
p�q and in about 10 iterations with Qp3q

p�q.

We use mean squared error (MSE) between the estimated mean parameters of

y
ij

’s and their true mean parameters to evaluate the precision of estimation. The

estimated mean parameters of y
ij

’s are calculated by recovering their membership
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Table 3.1: Goodness of fit tests using the fitness index (FI) in low dimensional
categorical simulation. Larger values of FI indicate better fit, with the maximum
at one. Results shown are based on ten simulated data sets for each value of n.
Standard deviations of FI are provided in parentheses.

n k Q

p2qp�q 1st stage Q

p2qp�q 2nd stage Q

p3qp�q 1st stage Q

p3qp�q 2nd stage

50

1 0.824(0.020) -1.865(4.950) 0.585(0.031) -27.987(40.128)
2 0.908(0.011) -1.285(2.630) 0.745(0.032) -27.240(54.415)
3 0.930(0.004) 0.570(0.044) 0.775(0.022) -27.713(42.607)
4 0.901(0.010) 0.588(0.032) 0.735(0.023) 0.254(0.090)
5 0.795(0.033) 0.686(0.021) 0.653(0.024) 0.305(0.091)

100

1 0.860(0.012) -0.521(2.142) 0.651(0.021) -0.031(0.703)
2 0.930(0.011) 0.282(0.644) 0.795(0.030) -4.457(8.924)
3 0.960(0.005) 0.677(0.044) 0.851(0.009) -4.868(11.889)
4 0.942(0.012) 0.691(0.042) 0.822(0.010) 0.225(0.019)
5 0.863(0.046) 0.782(0.022) 0.768(0.044) 0.232(0.080)

200

1 0.869(0.012) 0.679(0.060) 0.682(0.021) 0.298(0.070)
2 0.940(0.007) 0.699(0.047) 0.838(0.014) 0.306(0.054)
3 0.980(0.001) 0.761(0.061) 0.919(0.004) 0.278(0.049)
4 0.967(0.006) 0.780(0.019) 0.891(0.008) 0.287(0.050)
5 0.911(0.017) 0.824(0.008) 0.864(0.015) 0.286(0.042)

500

1 0.882(0.007) 0.783(0.022) 0.713(0.012) 0.414(0.080)
2 0.948(0.006) 0.799(0.019) 0.870(0.013) 0.427(0.080)
3 0.992(†0.001) 0.884(0.024) 0.966(0.001) 0.388(0.073)
4 0.983(0.004) 0.874(0.026) 0.938(0.005) 0.365(0.065)
5 0.937(0.014) 0.894(0.006) 0.921(0.007) 0.353(0.042)

1,000

1 0.888(0.003) 0.828(0.006) 0.729(0.008) 0.571(0.017)
2 0.951(0.003) 0.855(0.009) 0.881(0.008) 0.615(0.030)
3 0.996(†0.001) 0.950(0.005) 0.982(0.001) 0.609(0.031)
4 0.989(0.002) 0.938(0.004) 0.961(0.003) 0.579(0.030)
5 0.953(0.010) 0.932(0.006) 0.951(0.006) 0.550(0.034)

variables using (3.22). We compare our method with the simplex factor model (SFM)

(Bhattacharya and Dunson, 2012) and latent Dirichlet allocation (LDA) (Blei et al.,

2003) on the ten simulated data sets. For the SFM, we run 10, 000 steps of MCMC

with fixed k and a burn-in of 5, 000 iterations. Posterior thinned samples are collected

by keeping one posterior draw after every 50 steps. From the posterior samples

we calculate posterior mean as our estimate. For the LDA model, we use the lda

package in R (Chang, 2012) with collapsed Gibbs sampling. We use the same number

of MCMC iterations and burn-in iterations as with SFM. The Dirichlet parameter

for mixture proportions is set to ↵ “ 0.1 and the Dirichlet parameter for topic

distributions is set to � “ 0.5.

76



Figure 3.1: Parameter estimation with MELD in the low dimensional categorical
simulations. Parameters are estimated with Qp2q

p�q and Qp3q
p�q on 10 simulated

data sets with n “ 1, 000 and k “ 3. Results shown are for first stage estimation.

MSE’s with di↵erent values of k are shown in Figure 3.3 (values are shown in Table

B.1) and the running times of di↵erent methods are reported in Table 3.2. MELD

Qp2q
p�q with first stage estimation has the most accurate parameter estimation and

fastest running speed in most cases. The second stage of MELD Qp3q
p�q does not

perform well with small values of n (i.e., n “ 50), but estimation accuracy is better

when n is larger. SFM has comparable MSE’s when n is not large. However when

n “ 500 and 1, 000, MELD outperforms SFM.

We further evaluate performance in the presence of contamination. For each

simulated data set, we randomly replace a proportion of observations (4% and 10%)

with draws from a discrete uniform distribution. The MSE’s under di↵erent values

of k are shown in Figure 3.3. With 4% contamination, MELD has the most accurate

parameter estimation in almost all cases. MELD Qp2q
p�q with first stage estimation

performs the best, followed by MELD Qp3q
p�q with first stage estimation. The
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Figure 3.2: Convergence of parameter estimation with MELD in the low dimen-
sional categorical simulation. Results plotted are for ten simulated data sets with
n “ 1, 000 and k “ 3 in the first stage estimation. True parameter values are shown
as dark lines.

MSE’s of SFM increase. When we increase contamination to 10%, MELD has the

most accurate MSE in all cases. MELD Qp2q
p�q with first stage estimation performs

best, followed by MELD Qp2q
p�q with second stage estimation. MELD Qp2q

p�q

consistently performs better than Qp3q
p�q, suggesting the robustness of using lower

order moments in parameter estimation.

Inference of population structure In this setting, we simulate genotype data from

an admixed population of a diploid species. Each observation y
ij

is a categorical

variable with three levels t0, 1, 2u representing the genotype at locus j in subject

i. The number represents the number of copes of the reference alleles on the two

copies of the chromosome. We first assume that the genotype distribution is in

78



Table 3.2: Comparison of total running time in seconds between MELD, SFM, and
LDA in categorical simulation. Methods are run on a Intel(R) Core i7-3770 CPU at
3.40GHz machine. MELD represents the averaged running time for the first stage
estimation on the ten simulated data sets for each value of n. Average number of
iterations to convergence are in parentheses. The second stage estimation requires
one or two additional iterations starting from the parameters estimated in the first
stage.

n k MELD Q

p2qp�q MELD Q

p3qp�q SFM LDA

50

1 0.026(2) 0.489(2) 9.199 0.104
2 0.221(9) 2.083(5) 27.058 0.156
3 0.410(11) 4.645(7) 44.758 0.207
4 0.681(13) 6.765(7) 54.122 0.254
5 0.921(14) 9.495(8) 66.367 0.301

100

1 0.022(2) 0.418(2) 7.203 0.208
2 0.192(7) 2.333(5) 25.980 0.309
3 0.364(9) 3.942(6) 46.337 0.407
4 0.588(11) 5.577(6) 64.178 0.502
5 0.934(15) 7.795(7) 82.907 0.593

200

1 0.028(2) 0.470(2) 9.463 0.416
2 0.227(9) 2.185(5) 31.547 0.617
3 0.400(10) 3.914(6) 53.503 0.811
4 0.658(13) 5.869(6) 63.947 1.001
5 0.983(15) 8.498(8) 75.846 1.183

500

1 0.017(1) 0.409(2) 15.611 1.060
2 0.276(11) 3.222(7) 41.810 1.566
3 0.397(10) 4.107(6) 55.475 2.048
4 0.578(11) 5.083(6) 87.932 2.512
5 0.954(15) 7.070(6) 93.092 2.967

1,000

1 0.016(1) 0.413(2) 25.923 2.148
2 0.289(11) 3.287(7) 57.390 3.151
3 0.371(10) 3.901(6) 89.434 4.108
4 0.614(12) 5.065(6) 111.845 5.043
5 1.000(16) 7.047(6) 146.234 5.946

Hardy-Weinberg equilibrium (HWE), which means that the two copies of the allele

are independently inherited from the two parents with a common reference allele

frequency. Let the reference frequency of an allele in the population be ⇡paq. Then the

probability of observing genotypes 0, 1, and 2 are p1´⇡paq
q

2, 2p1´⇡paq
q⇡paq and p⇡paq

q

2,

respectively. We simulate genotype data for 100 loci for n “ t50, 100, 200, 500, 1, 000u

subjects. The reference allele frequencies for each population are drawn uniformly

from p0.05, 0.95q. Then we relax the HWE assumption and assume the genotype

distribution to follow a multinomial distribution with three outcomes, the non-HWE
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Figure 3.3: Comparison of mean squared error (MSE) of estimated parameters
in categorical simulations. For SFM and LDA, posterior means of parameters are
calculated using 100 posterior draws on each of the ten simulated data sets. The
values of the MSE’s and their standard deviations are in Table B.1, B.2 and B.3.

case. The non-HWE can be thought as the case where the reference allele has

di↵erent frequencies on the two copies of the chromosome. Let ⇡paq
1 and ⇡paq

2 be

their frequencies. Then the probability of observing genotypes 0, 1, and 2 are p1 ´

⇡paq
1 qp1 ´ ⇡paq

2 q, p1 ´ ⇡paq
1 q⇡paq

2 ` p1 ´ ⇡paq
2 q⇡paq

1 “ ⇡paq
1 ` ⇡paq

2 ´ 2⇡paq
1 ⇡paq

2 and ⇡paq
1 ⇡paq

2 ,

respectively. We generate the multinomial parameters of genotype distributions by

drawing from Dirp0.5, 0.5, 0.5q, from which ⇡paq
1 and ⇡paq

2 could be determined. The

number of populations is set to k “ 4, with mixture proportions x

i

drawn from

Dirp0.1, 0.1, 0.1, 0.1q. For each value of n, ten data sets are generated. We apply

MELD with Qp2q
p�q to these simulated data setting the number of latent populations

to k “ t1, . . . , 5u.

Evaluating the goodness of fit across k’s, FI chooses the correct number of latent

populations in most cases (Table 3.3). We compare MELD with SFM, LDA, and two

state-of-the-art methods in population genetics: ADMIXTURE (ADM) (Alexander

et al., 2009) and Logistic factor analysis (LFA) (Hao et al., 2013). ADM uses a fast

likelihood-based approach to estimate the allele frequencies in each population (a pˆk
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Table 3.3: Goodness of fit tests using the fitness index (FI) in simulation of inference
of population structure. Larger values of FI indicate better fit, with the maximum
at one. Results shown are based on ten simulated data sets for each value of n.
Standard deviations of FI are provided in parentheses.

HWE non-HWE

n k Q

p2qp�q 1st stage Q

p2qp�q 2nd stage Q

p2qp�q 1st stage Q

p2qp�q 2nd stage

50

1 0.921(0.004) 0.816(0.013) 0.916(0.008) 0.614(0.116)
2 0.929(0.003) 0.820(0.014) 0.934(0.007) 0.662(0.062)
3 0.932(0.002) 0.827(0.009) 0.949(0.005) 0.734(0.017)
4 0.931(0.004) 0.834(0.009) 0.953(0.004) 0.776(0.004)
5 0.919(0.003) 0.831(0.006) 0.925(0.009) 0.795(0.007)

100

1 0.948(0.002) 0.886(0.007) 0.934(0.004) 0.801(0.011)
2 0.955(0.002) 0.890(0.008) 0.951(0.004) 0.810(0.016)
3 0.960(0.001) 0.898(0.007) 0.965(0.004) 0.833(0.016)
4 0.961(0.002) 0.912(0.003) 0.975(0.002) 0.872(0.011)
5 0.951(0.003) 0.910(0.002) 0.960(0.006) 0.877(0.004)

200

1 0.963(0.002) 0.926(0.002) 0.944(0.002) 0.856(0.004)
2 0.971(0.001) 0.935(0.002) 0.959(0.002) 0.870(0.004)
3 0.976(0.001) 0.944(0.002) 0.974(0.002) 0.895(0.005)
4 0.978(0.001) 0.956(0.001) 0.988(0.001) 0.933(0.005)
5 0.971(0.001) 0.953(0.001) 0.974(0.006) 0.930(0.004)

500

1 0.973(0.001) 0.950(0.002) 0.950(0.001) 0.890(0.002)
2 0.980(0.001) 0.960(0.001) 0.962(0.002) 0.905(0.005)
3 0.986(0.001) 0.971(0.001) 0.977(0.002) 0.927(0.010)
4 0.990(0.002) 0.981(0.001) 0.995(†0.001) 0.973(0.001)
5 0.983(0.001) 0.979(0.001) 0.986(0.003) 0.966(0.002)

1,000

1 0.976(0.001) 0.957(0.001) 0.953(0.001) 0.901(0.002)
2 0.983(0.001) 0.967(0.001) 0.965(0.001) 0.920(0.004)
3 0.989(0.001) 0.979(0.001) 0.979(0.002) 0.939(0.009)
4 0.995(0.001) 0.990(†0.001) 0.998(†0.001) 0.986(0.001)
5 0.989(0.001) 0.989(†0.001) 0.989(0.002) 0.979(0.001)

matrix), and mixture proportions for each subject (a k ˆ n matrix) in an admixture

model (Pritchard et al., 2000b). Then, the allele frequency at locus j for subject i

can be calculated by multiplying the two matrices. The LFA model assumes the logit

of allele frequencies factorize to a product of two matrices. Parameter estimation is

performed using a modified PCA algorithm. Both models assume that the genotypes

are in HWE. We calculate the MSE’s between the mean parameters of the genotype

distributions of y
ij

’s and their true mean parameters. MELD Qp2q
p�q in the first

stage estimation outperforms SFM, LDA and ADM in most cases. The LFA has

the most accurate parameter estimation under the correct value of k. LDA has the
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most stable performance across di↵erent values of k (Table B.4 and B.5). In terms

of speed, ADM has the fastest running time, followed by LDA and LFA. MELD is

faster than SFM.

3.3.2 Mixed data types

For simulations with mixed data we consider two settings: 1) a genetic association

study where DNA sequence variations influence a quantitative trait; 2) a general

setting with categorical, Gaussian, and Poisson variables.

Genetic quantitative trait association study We consider a simulation setting mimick-

ing applications in which DNA sequence variations influence a quantitative trait.

We generate a sequence of nucleotides tA,C,G, T u at 50 genetic loci along with a

continuous or integer-valued trait, leading to p “ 51 variables. We set k “ 2 latent

components and simulate n “ 1, 000 individuals, with the first 500 from the first

component and the last 500 from the second component. We choose eight loci J “

t2, 4, 12, 14, 32, 34, 42, 44u to be associated with the trait. Their multinomial param-

eters for each of the two components are randomly drawn from Dirp0.5, 0.5, 0.5, 0.5q.

The distributions for nucleotides in other loci are set to Multip0.25, 0.25, 0.25, 0.25q.

Continuous traits are drawn from Np´3, 1q and Np3, 1q, while count traits are drawn

from Poissonp5q and Poissonp10q, respectively for the two components. Ten data sets

are simulated from the generative model of MELD in (3.2). To assess robustness,

we add contamination (e.g., through genotyping errors) by randomly replacing 4%,

10% and 20% of the nucleotides with values uniformly generated from tA,C,G, T u.

We run MELD with first stage estimation of Qp2q
p�q. We choose the number of

components k “ t1, . . . , 5u. The fitness test indicates that FI chooses the correct

value of k on all ten data sets (Table 3.4). For each genomic locus, we calculate its

marginal frequency according to the simulated data, and then we compute the aver-
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Table 3.4: Goodness of fit test using the fitness index (FI) in a genetic association
simulation. Values closer to one indicate a better fit. Values shown are the results
of applying MELD Qp2q

p�q with first stage estimation to ten simulated data sets.
Standard deviation of FI across the ten simulations are in parentheses.

k 1 2 3 4 5

Gaussian trait 0.982(†0.001) 0.984(†0.001) 0.977(0.003) 0.947(0.004) 0.915(0.005)

Poisson trait 0.997(†0.001) 0.999(†0.001) 0.998(0.001) 0.998(†0.001) 0.989(0.003)

aged KL distance between the estimated component distributions and the marginal

frequency as follows

aveKLpy
ij

q “

1

k

k

ÿ

h“1

dj
ÿ

cj“1

Prpy
ij

“ c
j

|m
ij

“ hq log

ˆ

Prpy
ij

“ c
j

|m
ij

“ hq

Prpy
ij

“ c
j

q

˙

. (3.27)

A smaller averaged KL distance suggests that the component distributions are closer

to the marginal distribution, implying that the locus frequency is not di↵erentiated

across components. The set J correspond exactly to the eight loci with largest

averaged KL distance (Table 3.5).

We compare MELD with the Bayesian copula factor model (Murray et al., 2013),

which estimates a correlation matrix C between variables. From this estimate, we

compute partial correlations between the response variable (trait) and each genetic

locus (Ho↵, 2007). We run MCMC for the Bayesian copula factor model 10, 000

iterations with the correct value for k and a burn-in of 5, 000 iterations. Posterior

samples are collected every 50 iterations. We then select genomic locations for which

their 95% credible intervals of the partial correlation does not include zero. The

resulting loci are shown in Table 3.5. The Bayesian copula factor model selects

nucleotides that are not in J and misses locus 32 in most cases.
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Table 3.5: Quantitative trait association simulation with 50 nucleotides and one
response. Nucleotides not in J “ t2, 4, 12, 14, 32, 34, 42, 44u are labeled by an under-
line and missing nucleotides are crossed out. Results shown are for one of the ten
simulated data sets. The complete results can be found in Table B.6 and B.7.

Response Contamination Qp2qp�q 1st stage Bayesian copula factor model

Gaussian

0% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 18, 27,⇢⇢32 , 34, 42, 44u
4% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 18, 27,⇢⇢32 , 34, 42, 44, 45u
10% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 , 27,⇢⇢32 , 34, 42, 44, 49, 50u
20% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 9, 11, 12,⇢⇢14 , 20,⇢⇢32 , 34, 42, 44u

Poisson

0% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12, 14,⇢⇢32 , 34, 42, 44u
4% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44u
10% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12, 14, 16, 32, 34, 42, 44u
20% t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12,⇢⇢14 , 32, 34, 35, 42, 44u

Mixed variables with categorical, Gaussian, and Poisson distributions Next, we sim-

ulate data with p “ 100 mixed variables. The first 95 variables are categori-

cal, each with d “ 4 levels. We simulate two additional Gaussian variables and

three additional Poisson variables. We set the number of components to k “ 2.

The multinomial parameters for variables in J1 “ t1, 2, 3, 4, 5u in the first compo-

nent and variables in J2 “ t4, 5, 6, 7, 8u in the second component are drawn from

Dirp0.5, 0.5, 0.5, 0.5q. The distributions for the rest categorical variables in the two

components are set to Multip0.25, 0.25, 0.25, 0.25q. The Gaussian variables are drawn

from Np´3, 1q in component one and Np3, 1q in component two. The Poisson vari-

ables are drawn from Poissonp5q and Poissonp10q in components one and two respec-

tively. The mixture proportions Dirichlet parameter ↵ is set to p0.1, 0.1q

J. Finally,

n “ t50, 100, 200, 500, 1, 000u samples are drawn from the generative model in (3.2).

For each value of n, ten data sets are simulated. Applying MELD using Qp2q
p�q with

first stage estimation converges in fewer than 40 iterations with accurate estimates

of the mean parameters for the categorical, Gaussian, and Poisson variables (Figures

3.4A, 3.4B; Table B.8). In this simulation, FI again is consistently maximized at the
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correct value of the number of latent components (Table 3.6).

Figure 3.4: MELD applied to simulated categorical, Gaussian, and Poisson mixed
data types. Parameters are estimated using MELD Qp2q

p�q on ten simulated data
sets with n “ 1, 000 and k “ 2. Results shown are for the first stage estimation.
Panel A: Convergence of parameter estimates for categorical variables with true
parameters drawn as dark lines. Panel B: Convergence of parameter estimates for
Gaussian and Poisson variables with true parameters drawn as dark lines.

Table 3.6: Goodness of fit test using fitness index (FI) for categorical, Gaussian,
and Poisson mixed data simulation. Values of FI closer to one indicate a better fit.
Values shown are the results of applying MELD Qp2q

p�q on ten simulated data sets.
Standard deviations of FI across the ten simulations are in parentheses.

k 1 2 3 4

n “ 50
1st stage 0.985(0.005) 0.993(0.002) 0.993(0.002) 0.993(0.002)
2nd stage 0.059(1.988) 0.750(0.006) 0.732(0.006) 0.711(0.007)

n “ 100
1st stage 0.989(0.003) 0.997(0.001) 0.997(0.001) 0.997(†0.001)
2nd stage 0.854(0.047) 0.872(0.002) 0.855(0.002) 0.839(†0.002)

n “ 200
1st stage 0.991(0.001) 0.998(†0.001) 0.998(†0.001) 0.998(†0.001)
2nd stage 0.920(0.018) 0.935(†0.001) 0.925(0.001) 0.916(0.001)

n “ 500
1st stage 0.992(0.001) 0.999(†0.001) 0.999(†0.001) 0.999(†0.001)
2nd stage 0.964(0.004) 0.974(†0.001) 0.970(†0.001) 0.965(†0.001)

n “ 1, 000
1st stage 0.993(†0.001) 1.000(†0.001) 0.999(†0.001) 0.999(†0.001)
2nd stage 0.978(0.002) 0.987(†0.001) 0.985(†0.001) 0.982(†0.001)
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3.4 Applications

In this section we apply MELD to three public available data sets.

3.4.1 Promoter sequence analysis

We apply MELD to promoter data available in the UCI machine learning repository

(Lichman, 2013). The data include n “ 106 nucleotide sequences tA,C,G, T u of

length 57. The first 53 sequences are located in promoter regions of the genome, and

the last 53 sequences are located in non-promoter regions. The goal for these data

is binary classification: Using nucleotide sequence we would like to predict whether

or not the sequence is in a promoter or a non-promoter region. Here, we include the

promoter or non-promoter status of the sequences as an additional binary variable,

giving us p “ 57 ` 1 categorical variables. We apply MELD using Qp2q
p�q with

first stage estimation on the full data and also on the subset of the sequences in

the promoter region and the subset of sequences in non-promoter regions separately

(removing the promoter status variable). We set k “ t1, . . . , 8u. For k “ 2, MELD

converges in 2.13 seconds, compared with SFA, which takes 41.6 seconds to perform

10, 000 MCMC iterations for the same value of k. We evaluate di↵erent values of

k using the goodness of fit test. FI selects two components for the full data, two

components for the promoter data, and one component for the non-promoter data

(Table 3.7).

Table 3.7: Goodness of fit testing using the fitness index (FI) on the promoter data.
Values shown are the result of applying MELD Qp2q

p�q with first stage estimation
to the promoter data set.

k 1 2 3 4 5 6 7 8

full 0.913 0.915 0.911 0.904 0.896 0.890 0.881 0.871

promoter 0.890 0.896 0.888 0.862 0.833 0.811 0.769 -4.292

non-promoter 0.842 0.835 0.826 0.819 0.807 0.795 0.780 0.762
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We choose k “ 2 in following analysis. For each nucleotide position, we calcu-

late the averaged KL distance between the estimated component distributions and its

marginal distribution using equation (3.27). A biological interpretation of this metric

is that it quantifies the stratification of each nucleotide distribution across compo-

nents: A larger value of the averaged KL distance indicates greater stratification

across components, which suggests that the nucleotide is important in di↵erentiat-

ing the components. For the full data set, we observe approximately two peaks of

the averaged KL distance, one around the 15th nucleotide and one around the 42nd

nucleotide (Figure 3.5). The first peak corresponds to the start of the biologically

conserved region for promoter sequences (Harley and Reynolds, 1987). For MELD

applied only to promoter sequences, this peak is reduced, suggesting that, at approx-

imately the 15th nucleotide, the components all include similarly well conserved dis-

tributions of this nucleotide. However, this peak is found in non-promoter sequences,

meaning they have diverged component distributions. Together with the peak in full

data set, we could reason that the peak in the full data set is caused by the stratifi-

cation of promoter and non-promoter sequences; nucleotides around this peak have

conserved distributions (important) for promoter sequences well they are relatively

diverged in non-promoter regions (less important). The estimated component mem-

bership variables also show the importance of nucleotides around those nucleotides

(Figure 3.6 and 3.7). For the peak around the 42nd nucleotide, this phenomenon is

reversed. The increased averaged KL distance remains in promoter sequences but

diminishes in non-promoter sequences. One possible explanation is that this region

is important to non-promoter sequences well less important for promoter sequences.

We next use normalized mutual information to describe the dependence between

nucleotide pairs (Bhattacharya and Dunson, 2012). Mutual information (MI) is a

symmetric metric used to quantify the statistical information shared between two

distributions (Cover and Thomas, 2006). Here, we use the normalized MI (nMI) by
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Figure 3.5: Averaged Kullback-Leibler distance of MELD applied to the pro-
moter data. The x-axis is the nucleotide position. The y-axis is the averaged
Kullback-Leibler (KL) distance between the estimated component distributions and
the marginal frequency of each nucleotide. The three rows include the averaged KL
distance across the full set of sequences (plus the binary classification vector, not
shown; top), across the promoter sequences (middle), and across the non-promoter
sequences (bottom).

dividing the MI by the geometric mean of entropies of the two distributions (Strehl

and Ghosh, 2003). The nMI between the jth and tth categorical variable in MELD

is calculated using

nMIpy
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Figure 3.6: Recovered membership variables in application of promoter sequence
analysis. The results shown are the membership variables for full sequence data with
k “ 2. Promoter and non-promoter sequences are correctly classified (top row).

The terms Prpy
ij

“ c
j

q and Prpy
ij

“ c
j

, y
it

“ c
t

q are estimated using the first and

second moment equations. When y
ij

” y
it

, then nMIpy
ij

, y
it

q “ 1.

We analyze the nMI of the results from applying MELD to the promoter data

with k “ 2. The regions around the 15th nucleotide and the 42nd nucleotide show

relatively high nMI in the full sequence results (Figure 3.8A). However the depen-

dence around the 15th nucleotide position is not observed in promoter sequences

(Figure 3.8B). Neither of the two nMI peaks are observed in the results from the

non-promoter sequences only (Figure 3.8C).

3.4.2 Political-economic risk data

In a second application, we apply MELD to political-economic risk data (Quinn,

2004), which include five proxy variables of mixed types measured for 62 countries.

The data set has been collected and analyzed to quantify a sense of political-economic
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Figure 3.7: Recovered membership variables in application of promoter sequence
analysis. The results shown are the membership variables for full sequence data with
k “ 3. Promoter and non-promoter sequences are correctly classified (top row).

Figure 3.8: Normalized mutual information in the promoter data. The normalized
mutual information (nMI) between every nucleotide pair is calculated using param-
eters estimated by MELD with k “ 2. Panel A: Results for the full data. Panel B:
Results for promoter sequences only. Panel C: Results for non-promoter sequences
only.
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risk, a latent quantity associated with each of the 62 countries, using a probit factor

model (Quinn, 2004) and a Bayesian copula factor model (Murray et al., 2013).

The data are available in the MCMCpack package. Treating the ordinal variables as

categorical, there are three categorical variables and two real valued variables. The

details of the five variables are shown in Table 3.8.

Table 3.8: Variables in the political-economic risk data

Variable Type Explanation

ind.jud binary
An indicator variable that measures the independence
of the national judiciary. This variable is equal to one if the
judiciary is judged to be independent and equal to zero otherwise.

blk.mkt real

Black-market premium measurement. Original values are measured
as the black-market exchange rate (local currency per dollar)
divided by the o�cial exchange rate minus one. Quinn (2004)
transformed the original data to log scale.

lack.exp.risk ordinal
Lack of appropriation risk measurement.
Six levels with coding 0 † 1 † 2 † 3 † 4 † 5.

lack.corrup ordinal
Lack of corruption measurement.
Six levels with coding 0 † 1 † 2 † 3 † 4 † 5.

gdp.worker real
Real gross domestic product (GDP) per worker in 1985 international prices.
Recorded data are log transformed.

We apply MELD with k “ t1, . . . , 5u using both Qp2q
p�q and Qp3q

p�q with first

stage estimation to the data set. For Qp2q
p�q with k “ 3 MELD converged in 0.10s,

and for Qp3q
p�q with k “ 3 MELD converged in 0.45s. The Bayesian copula factor

model takes 0.91s to complete 10, 000 MCMC iterations. The FI criterion for Qp2q
p�q

selects k “ 4 and, for Qp3q
p�q, selects k “ 3 (Table 3.9). We choose results from

Qp3q
p�q with k “ 3 for further analysis.

The estimated component parameters for the five variables show distinct in-

terpretations of the three components (Figure 3.9). We might interpret the three

components as low-risk, intermediate-risk, and high-risk political-economic status

respectively. The first component has a high probability of independence of the

national judiciary (ind.jud being one) and a low measurement of black-market pre-
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Table 3.9: Goodness of fit test using fitness index (FI) in political-economic risk
data. Values shown are the results of application of MELD Qp2q

p�q and Qp3q
p�q

with first stage estimation.

k 1 2 3 4 5

Qp2q
p�q

0.9974 0.9996 0.9996 0.9998 0.9927
Qp3q

p�q

0.9181 0.9791 0.9885 0.9861 0.9844

mium. The first component also has a high probability of observing high levels in

lack.exp.risk (4, 5) and in lack.corrup (3, 4, and 5). The mean of the GDP per

worker is highest among the three components. The second component, on the other

hand, has a relatively high probability of being zero in ind.jud and a large mean

value of blk.mkt. Both of lack of appropriation risk measurement and lack of cor-

ruption measurement put higher weights on lower levels (0, 1 and 2), indicating more

risk and higher levels of corruption. The GDP per worker is still high. We might

interpret this component as a society being relatively unstable while still having a

good economic forecast, meaning that GDP per worker is high, possibly through the

black market. The last component has the least judicial independence as quantified

by the probability of ind.jud being zero. The black-market premium is also low,

as is the lack of risk level and lack of corruption level. The GDP per worker is by

far the lowest among the three components. We might interpret this component as

society being the most unstable with the greatest economic risk. We find although

the three components have distinct stratification, each country is a mixture of the

three components reflected by the recovered memebership variables shown in Figure

3.10. Assigning a country to a mixture of components allows our method to find

clear stratified components from the mixed data type observations.
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Figure 3.9: Estimated component parameters for the political-economic risk data.
Results shown from applying MELD to the data set using Qp3q

p�q with k “ 3
components. For the real-valued variables, component mean parameters are plotted.
For the categorical variables, component-wise relative proportions are plotted.

3.4.3 Gene expression quantitative trait loci mapping

As a third application we apply MELD to Human HapMap phase 3 (HM3) project

genotype and gene expression data (Stranger et al., 2012) to perform a gene expres-

sion quantitative trait loci (eQTL) mapping. We hypothize that population struc-

ture, which stratifies the distributions of genotype, might act in a similar manner on

quantitative traits. Such stratification might be a reason to cause dependence and

association between a SNP and a trait. The HM3 data set consists of 608 individuals.

We focus on SNP’s on chromosome 21 having a minor allele frequency greater than

5%. SNP’s are represented by the number of copies of the minor allele at each loci,

and we obtain 1, 672 SNP’s after selecting every 10th loci to avoid including SNP’s

in strong linkage. For gene expression data we extract genes on chromosome 21 (237

genes) for analyses.

We employ two analyses. We first apply MELD to SNP data only using Qp2q
p�q

with first stage estimation. This can be viewed as estimating genotype distributions

in di↵erent latent sub-populations. Then we apply MELD to both SNP and gene

expression data. In this case, we attempt to find how including gene expression traits
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Figure 3.10: Recovered membership variables in application of political-economics
risk data set. The results shown are the membership variables for political-economics
risk data with k “ 3 using MELD Qp3q

p�q.
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would influence the population stratification and how such stratification is related to

eQTL. We consider di↵erent number of sub-populations including k “ t1, 2, 3, 4, 5u.

FI chooses k “ 2 sub-populations. Therefore in following analysis we set k to this

number.

Table 3.10: Goodness of fit test using fitness index (FI) in HapMap phase 3 data
set. Values shown are the results of application of MELD Qp2q

p�q with first stage
estimation on the selected chromosome 21 data set.

k 1 2 3 4 5

SNP only 0.987 0.995 0.973 0.867 0.762

SNP+expression 0.993 0.997 0.988 0.941 0.896

We first analyze the recovered membership variables (Figure 3.11 and 3.12). The

results suggest that there is a clear population structure among the 608 individuals

in SNP data, reflected by the di↵erent bands in the two figures. However we do not

observe a clear population structure in gene expression data (Figure 3.12). Then we

calculate average KL distance for the 1, 672 SNPs without and with gene expression

included (Figure 3.13). Several SNP loci show high values of averaged KL distance,

suggesting they have clear di↵erentiated distributions among sub-populations. The

averaged KL distances do not change after inclusion of gene expression data. We

extract the first five SNP’s with highest average KL distance. Their genotypes are

shown in Table 3.11. We further examine whether there are significant associations

with those SNP’s by performing univariate regression tests against the expressions

of the 237 genes. Under pvalue cuto↵ of 0.05 we do not observe any significant

associations.
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Figure 3.11: Recovered membership variables in application of HM3 chromosome
21 data. The results shown are the membership variables for SNP data only with
k “ 2.

Figure 3.12: Recovered membership variables in application of HM3 chromosome
21 data. The results shown are the membership variables of for both SNP and gene
expression data with k “ 2.
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Figure 3.13: Averaged Kullback-Leibler distances in HM3 chr21 data. The av-
eraged Kullback-Leibler (KL) distance between estimated component distributions
from MELD and marginal frequency for each SNP using equation (3.27) is calculated
with k “ 2.

3.5 Discussion and conclusion

In this chapter, we have developed a new class of latent variable models with Dirichlet-

distributed latent variables for mixed data types. These generalized Dirichlet latent

variable models extend previous mixed membership models such as LDA (Blei et al.,

2003) and simplex factor models (Bhattacharya and Dunson, 2012) to allow mixed

data types. For this class of models, we develop a fast parameter estimation pro-

cedure using generalized methods of moments. Our GMM estimator is consistent,

requiring the correct specification of first moment of component distributions. E�-

ciency can be achieved by deriving an optimal weight matrix.

Our moment functions are similar to the moment tensor approaches developed

in recent work (Anandkumar et al., 2014b). The key novelty of our moment func-

tions is they are constructed using heterogeneous low order polynomials instead of

homogeneous polynomials. The heterogeneity of the moment functions allows us to
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Figure 3.14: Averaged KL distance in application of HM3 chromosome 21 data
with and without gene expression data included under k “ 2.

develop a fast Newton-Raphson method for parameter estimation. The computa-

tional advantage of MELD over other parameter estimation methods such as EM

and MCMC is that parameter estimation does not require the instantiation of the

latent variables. We derive population moment conditions after marginalizing out

the sample-specific Dirichlet latent variables. Results suggest that the fitness index

(FI) (Bentler, 1983) is a reliable metric for selecting the number of components in

this framework.

We demonstrate the utility of our approach using simulation studies and three ap-

plications. Our results show that MELD is a promising alternative to MCMC or EM

methods for parameter estimation, producing fast and robust parameter estimates.

Since our method depends only on certain forms of sample moments, parameter esti-

mation does not scale with sample size n after observed data are transformed to the

moment statistics. An online method to update moment statistics when new sam-

ples arrive would allow re-estimation of the parameters to include new observations.

One limitation of our method is that the Newton-Raphson method is of order Opp2q

using second moment functions and order Opp3q using third moment functions. One
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possible approach speed up MELD with large p problems is to use stochastic gradient

methods to calculate an approximate gradient in each step.
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Table 3.11: Top 5 SNP’s with largest averaged KL distances in HM3 chromosome
21 data.

SNP Genotype across 608 individuals aveKL

SNP1

2222222222222220000000000000000000000000000000000000000000
0000000000000000000000000000000000002222222222222222222122
0000000000000000000000000000000000000000000000000000222222
2200000000000000000000000000000222222222222222222222222222
2222222222222222221222222222222221222222222221212221222222
2212122222122222222222222222222222222222221222222222222222
2200000000000000000000000000000000000000000222222222222222
2222122121212222222211222122221222222222222222221222222221
2222222210000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000

0.4203

SNP2

2222221122221220000000000000000000000000000000000000000000
0000000000000000000000000000000000002222222221221222222222
0000000000000000000000000000000000000000000000000000222222
1200000000000000000000000000000221222222212222222122212222
2222222212122222222222212222222122122222222122222222222222
2222122222212222222222222222222222222222222222222222222221
2200000000000000000000000000000000000000000221222212122222
2222222221222221122222221222221222222222212221212212222221
2222222120000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000

0.4202

SNP3

2211222222222120000000000000000000000000000000000000000000
0000000000000000000000000000000000002212222222122222222222
0000000000000000000000000000000000000000000000000000222122
2200000000000000000000000000000222212122112222222222222222
2222222222122222221222222222222222212221222212222222222122
2121222221222221222212222222212122112221222222222212122222
2200000000000000000000000000000000000000000222122222222222
2222222222222212222222222122222222222222222222222122221122
2222222220000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000

0.4202

SNP4

2222222222222220000000000000000000000000000000000000000000
0000000000000000000000000000000000002222222222222222222222
0000000000000000000000000000000000000000000000000000122222
2100000000000000000000000000000222222222222222222222222222
2222222222222222222222222221222222222222222222122222222222
2122222212222222221222222222222221222222222222222222222222
2200000000000000000000000000000000000000000222222222222222
2222222221222222122221222222222122222212222222222222122222
2222222220000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000

0.4201

SNP5

2222222222222220000000000000000000000000000000000000000000
0000000000000000000000000000000000002222222222222222222222
0000000000000000000000000000000000000000000000000000222122
1200000000000000000000000000000222222212222222222222222222
2222222212222222222222222222222222222122222222212222222212
2221222222122222222212222221222121222221222222221222222222
2200000000000000000000000000000000000000000222221222222122
1112120222222212211221122122122122122112121121221211112222
2221222220000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000

0.4181

100



4

An e�cient Monte Carlo method for distributions

on manifolds

In Chapter 3 we develop a generalized method of moments (GMM) approach named

MELD for the latent Dirichlet variable model with mixed data types. The moment

functions specified in MELD are derived from a specific probability model. However

the parameter estimation avoids manipulations of the likelihood function. This is

distinct from the GMM often used in econometrics literature in which a probabil-

ity model is avoided. In this chapter, we are going to provide some preliminary

investigations of embedding the GMM approach to a likelihood context. Parameter

estimations are conducted under Bayesian framework. Using a Bayesian approach for

parameter estimation in MELD has at least two advantages. First posterior compu-

tations could be performed using e�cient MCMC algorithms. Second, the selection

of weight matrix A

p¨q in construction of GMM estimator could be avoided. The

weight matrix A

p¨q in the original GMM is used to penalize moment functions in a

way that moment functions with smaller variance or covariance receive larger weights

in the objective function, and vice versa. When embedding in Bayesian framework

such e↵ects could be achieved by introducing additional penalizing variables. The
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posterior distributions of the penalizing variables could be estimated from posterior

draws using MCMC algorithms. Moreover, model selections can be evaluated using

theories in Bayesian literature.

One major step in the posterior computation is to draw samples from a distri-

bution defined on a probability simplex. Drawing samples from such a density is

not trivial. An ine�cient sampler could make the posterior computation mix poorly.

With this problem in mind, we are motivated to develop an e�cient Monte Carlo

method that draws samples from distributions defined on Riemannian manifolds.

Our method combines Hamiltonian Monte Carlo (HMC) algorithm with a geodesic

integrator. The HMC component allows our method to accept bold moves in the

parameter space and the geodesic integrator component restricts the moves on a

manifold.

The rest of this chapter is arranged as follows. In Section 4.1 we give a brief

review of Bayesian generalized method of moments. In Section 4.2 we introduce the

pseudo-likelihood functions used for parameter estimation in MELD. The problem of

sampling from a distribution defined on the probability simplex appears. In Section

4.3, an e�cient Markov chain Monte Carlo method is developed to draw samples

from such a distribution. Our method could also be applied to distributions on other

types of manifolds with closed form equations of geodesic flow, for example the Stiefel

manifold. We perform simulation study to evaluate our method in Section 4.4 and

we conclude with a discussion in Section 4.5.

4.1 Bayesian generalized method of moments

Both of the method of moments (MM) and generalized method of moments (GMM)

introduced in Section 3.2 have been investigated in Bayesian framework by several

authors. Zellner (1996) develops a Bayesian method of moments approach for re-

gression problems. In his paper the author proposes first and second order posterior
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moment constraints and shows that the relations between the moment estimators

and those obtained under a likelihood model with di↵use priors. Posterior densities

are derived using maximum entropy criteria. Yin (2009) studies generalized linear

models with correlated observations. Such data are often observed in longitudinal

studies. The author builds on the generalized estimating equations (GEE) developed

by Zeger and Liang (1986) and Liang and Zeger (1986) in longitudinal data analy-

sis and develops a Bayesian GMM by constructing a pseudo-likelihood using GEE.

Posteriors of regression coe�cients and unknown correlation matrix are estimated

using MCMC algorithms with Gibbs sampling. Although the GEE resemble score

equations in a likelihood based analysis, the studies mentioned above are di↵erent

from our Bayesian approach in the sense that those methods completely avoid spec-

ification of a likelihood function. In contrast, the Bayesian GMM strategy studied

in this chapter uses moment functions derived from a likelihood model.

4.2 Pseudo-likelihood and posterior

In this section we are going to introduce the pseudo-likelihood functions developed for

MELD. Then we assign prior distributions on parameters and derive their conditional

posterior distributions. We first use the second order moment matrices defined in

(3.10) to construct a pseudo-likelihood function. We define

Lp2q
p�q 9

π

j,t,t°j

p⌧ p2q
jt

q

´djdt{2 exp

ˆ

´

1

2⌧ p2q
jt

||E

p2q
n,jt

´�
j

⇤p2q�J
t

||

2
F

˙

. (4.1)

Here E

p2q
n,jt

is defined in (3.16). The idea behind the likelihood function is that we

multiply ||F

p2q
n,jt

p�q||

2
F

“ ||E

p2q
n,jt

´ �
j

⇤p2q�J
t

||

2
F

by ´1{p2⌧ p2q
jt

q and exponentiate the

result to get a Gaussian kernel for every j, t with j † t. The final likelihood function

is the product of the ppp ´ 1q{2 kernels. The additional parameters t⌧ p2q
jt

u give

weights to the second order moment matrices and the weights for the functions in
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vecrF p2q
n,jt

p�qs are assumed to be equal. Those parameters play a similar role as the

weight matrix A

p2q in GMM estimation. Following the similar idea, we can define

a pseudo-likelihood function using both second moment matrices and third moment

tensors in (3.10) and (3.11)

Lp3q
p�q 9

π

j,t,t°j

p⌧ p2q
jt

q

´djdt{2 exp

ˆ

´

1
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2
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˙
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ˆ1 �j

ˆ2 �s
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2
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Here Ep3q
n,jst

is defined in (3.17). The parameters t⌧ p3q
jst

u give weights to the third order

moment tensors in a similar manner as t⌧ p2q
jt

u to second moment matrices. We let

T

p2q
“ t⌧ p2q

jt

u and T

p3q
“ t⌧ p3q

jst

u and treat them as unknown variables.

To complete the specification, we assign priors on �

jh

, ⌧ p2q
jt

and ⌧ p3q
jst

. For jth vari-

able being categorical, we give �
jh

a Dirichlet prior Dirp�
j

q with �

j

“ p�
j1, . . . , �jdjq

J.

The posterior of �
jh

with likelihood function (4.1) can be written as
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The posterior of �
jh

with likelihood (4.2) can be written as
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where
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The posteriors of �
jh

for categorical variable in (4.3) and (4.4) share a similar

following form

exp
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They both define a probability distribution on d
j

´1 simplex. We are going to intro-

duce a Monte Carlo method that targets the posterior distribution in next section.

When jth variable is non-categorical with a support of �
jh

across the real line,

we assign a normal prior Npµ0, �2
0q for �

jh

. This prior generates following posterior
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For non-categorical variable with positive value of �
jh

, such as Poisson or exponential

variable, we assign the prior the same distribution truncated to R`. The posterior is
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Equations (4.3), (4.4), (4.6), (4.7) and (4.8) complete a Gibbs sampler. The major

di�culty comes from drawing samples from (4.3) and (4.4) with the support on d
j

´1

simplex. The two equations can be generalized as drawing from a distribution with

density proportional to (4.5). We are going to introduce a Monte Carlo method to

draw samples from such a distribution.

4.3 Drawing from distributions on manifolds

In this section we are going to develop a method to e�ciently draw samples from

(4.5). Drawing samples from such a density with the support on d
j

´ 1 simplex

is not trivial. An ine�cient sampler could make the posterior computation mix

poorly. We view this problem as drawing samples from a distribution defined on a

manifold, which in our case is the d
j

´1 simplex. We develop a geodesic Riemannian

manifold Hamiltonian Monte Carlo (HMC) algorithm on the parameter manifold

(Byrne and Girolami, 2013). To facilitate the algorithm, we first re-parameterize the

parameter �

jh

“ p�
jh1, . . . ,�jhdjq

J by letting �
jhc

“ x2
jhc

for c “ 1, . . . , d
j

. Then

x
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J is a point on d
j

´ 1 dimensional sphere Sdj´1. According to

change of variables, the distribution of x
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follows as
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We are going to develop a HMC algorithm which induces a random walk on Sdj´1

that targets (4.9) as equilibrium distribution. Transforming back to �

jh

we get

posterior draws from (4.5). Before introducing the geodesic Riemannian manifold

HMC algorithm, we first give a very brief review about manifold and coordinate

embedding.
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4.3.1 Manifold and embedding

In this subsection give a very brief summary about manifold and coordinate embed-

ding. More details can be found in the book written by Absil et al. (2009).

Chart, atlas and coordinate

Roughly speaking a manifold is a topological space that locally acts like Euclidean

space. For any point ! P M, its coordinates is defined by a bijective mapping

�p¨q : M Ñ Rd from an open set around !, denoted by U , to an open set in Rd.

The open set and the mapping is defined as a chart (U ,�p¨q) and the image of the

mapping is called the coordinate of !. An atlas is the collection of charts (U
↵

,�p¨q

↵

)

with Y

↵

U
↵

“ M and U
↵

overlap smoothly. The dimension of M is given by the

dimension of the image of �p¨q

↵

.

Embedding

Usually ! is embedded in a higher dimensional embedding space such as a Euclidean

space Rd with d • m, where m is the dimension of the manifold. Such an embedding

space is called an ambient space. The general definition of embedding comes with

the mapping between two manifolds M1 and M2 with dimension m1 and m2. The

mapping is immersion whenm1 § m2 and it is submersion whenm1 • m2. When the

mapping is immersion with M1 Ä M2 and the manifold topology of M1 coincides

with the subspace topology of M2, then M1 is called embedded in M2. In most

of examples we face, the embedding space M2 is a vector space. For example, an

element in the Stiefel manifold ! P Vpp, kq are embedded in Rpˆk and dimension of

Vpp, kq is pk ´ ppp ` 1q{2. We use ✓ to denote the parameters that are represented

by embedded coordinates (extrinsic coordinates) in the embedding vector space Rd

of a underlying manifold. For example in our case �

jh

P �dj´1 and x

jh

P Sdj´1 are

represented by a d
j

dimensional vector.
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Given an embedded manifold, the tangent can be represented by a vector consist-

ing of coordinate-wise time derivative with respect to any smooth motions defined

on the manifold. The tangent space is the set of such vectors and forms a subspace

of ambient space of the manifold. For example, the tangent space of a sphere Sd´1

with coordinate ✓ P Rd is formed by T
✓

“ tv P Rd s.t. ✓J
v “ 0u.

The Riemannian manifold is a smooth manifoldM equipped with a inner product

g defined at every ✓ on the manifold as

gps, tq “ s

J
Gp✓qt.

s, t P T
✓

are two tangent vectors and Gp✓q is called metric tensor. We denote a

Riemannian manifold and its inner product as pM, gq. The Euclidean space Rd is

also a Riemannian manifold with the inner product as the dot product of vectors.

Let pM, gq and pN , hq be two Riemannian manifolds. An isometric embedding is

a mapping M Ñ N that preserve the inner product. In particular we are interested

in the case where N is an Euclidean space Rd. In this case, we have

s

J
Gp✓qt “ u

J
v,

where u
i

“

∞

j

Bx
i

{B✓
j

¨ s
j

and v
i

“

∞

j

Bx
i

{B✓
j

¨ t
j

. Here x is the new coordinate in

Rd of the manifold. This is equivalent to g
ij

“

∞

p

t“1 Bx
t

{B✓
i

¨ Bx
t

{B✓
j

. If we let M

with m
ij

“ Bx
i

{B✓
j

, then

Gp✓q “ M

J
M . (4.10)

Hausdor↵ measure and Lebesgue measure

We consider the distribution on manifolds. Therefore the Lebesgue measure defined

on Euclidean space should be converted to Hausdor↵measure, which is a fundamental

concept in geometric measure theory. When the manifold can be embedded into Rd,

Hausdor↵ measure can be interpreted as the surface area on the manifold (Byrne and

Girolami, 2013). The relation between Hausdor↵ measure and Lebesgue measure can
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be formulated as follows. Let Hd be a d dimensional Hausdor↵ measure and �m be

the Lebesgue measure on Rm. If we could parameterize the manifold by a Lipschitz

function f : Rm

Ñ Rd, then for any Hd measurable function g : Rd

Ñ R, we have

following basic area equation

Theorem 4.1. If f : Rm

Ñ Rd is Lipschitz and m § d, then
ª

A

gpfpxqqJ
m

fpxq�m

pdxq “

ª

Rd

gpyq|tx P A : fpxq “ yu|Hd

pdyq. (4.11)

Here J
m

fpxq is the m dimensional Jacobian of f , and in this case it is defined

as pJ
m

fpxqq

2
“ |D

J
D|, where D P Rdˆm is the derivative matrix with d

i,j

“

Bf
i

pxq{Bx
j

, 1 § i § d, 1 § j § m (Federer, 1969; Diaconis et al., 2012).

The right hand integral is the surface area integral of g over fpAq. The left hand

integral shows the surface area integral can be related to the integral of Lebesgue

measure in Rm and the Jacobian. Sampling from the density of normalized J
m

fpxq

on Rm and mapping back to the manifold via f gives samples from the area measure

(Diaconis et al., 2012).

We use an example studied by Diaconis et al. (2012) to provide an application of

(4.11). The Torus manifold

M “

"

´

rR ` r cosp✓qs cosp'q, rR ` r cosp✓qs sinp'q, r sinp✓q

¯J*

with 0 § ✓,' § 2⇡ for fixed R ° r ° 0 is a two dimensional manifold in R3. The area

of the Torus is p2⇡q

2Rr therefore the uniform density with Hausdor↵ area measure

is 1{rp2⇡q

2Rrs. The Lipschitz function f : R2
Ñ R3 is

fp✓,'q “

´

rR ` r cosp✓qs cosp'q, rR ` r cosp✓qs sinp'q, r sinp✓q

¯J
.

The derivative matrix D has following form

D “

¨

˝

´r sinp✓q cosp'q ´pR ` r cosp✓qq sinp'q

´r sinp✓q sinp'q pR ` r cosp✓qq cosp'q

r cosp✓q 0

˛

‚.
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Therefore the Jacobian J2pfpxqq

2
“ r2pR`r cosp✓qq

2. Thus the corresponding density

of ✓,' with Lebesgue measure is

pp✓,'q 9

1

4⇡2

`

1 `

r

R
cosp✓q

˘

.

Sampling ✓,' from this density and mapping back to R3 gives the uniform distribu-

tion on the Torus manifold.

4.3.2 Geodesic Riemann manifold Hamiltonian Monte Carlo

We now state a Riemann manifold Hamiltonian Monte Carlo method on the Sdj´1

sphere to draw posterior samples of x
jh

from (4.9). Neal (2011) gives a detailed

review of Hamiltonian Monte Carlo (HMC) and Girolami and Calderhead (2011) de-

velops HMC methods on Riemann manifold. We first introduce Hamiltonian Monte

Carlo method.

Hamiltonian Monte Carlo

Let `p✓q be the log density of parameters ✓ P Rd. HMC methods define a Hamilto-

nian by introducing a kinetic energy term with momentum variables q P Rd. The

Hamiltonian is defined as

Hp✓, qq “ ´`p✓q `

1

2
q

J
G

´1
q. (4.12)

From physics point of view, the equation can be thought as a sum of a potential

energy term (´`p✓q) defined at position ✓ and a kinetic energy term (12q
J
G

´1
q)

defined by the momentum variable q. It also can be viewed proportional to a log

joint density of ✓ and auxiliary variable q with

Hp✓, qq 9 log
`

pp✓, qq

˘

“ log
`

pp✓qppqq

˘

,

with ppqq

d

“ Np0,Gq. The Hamilton’s equations for the system (4.12) are

d✓

dt
“

BHp✓, qq

Bq

“ G

´1
q,
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dq

dt
“ ´

BHp✓, qq

B✓

“ r
✓

`p✓q. (4.13)

One can develop a HMC method using following steps to update p✓, qq jointly.

• Draw q from Np0,Gq. Due to factorization of p✓, qq, this is equivalent to draw

from q|✓.

• Perform following Hamiltonian dynamics to propose a new state p✓

˚, q˚
q

q

1
“ q `

✏

2
r

✓

`p✓q,

✓

˚
“ ✓ ` ✏G´1

q

1,

q

˚
“ q

1
`

✏

2
r

✓

`p✓˚
q. (4.14)

Here ✏ is the integration step size. Above equations are also know as the

leapfrog integrator.

• Accept p✓

˚, q˚
q with the Metropolis ratio. The Hamiltonian dynamics in (4.14)

keep the total energy approximately invariant (errors are generated due to

numerical integration), and the Metropolis step corrects this error. Due to the

volume preserving property of the Hamiltonian trajectory, Hastings ratio is not

needed (Neal, 2011; Girolami and Calderhead, 2011).

Above steps can be viewed as a Gibbs sampler by drawing conditional distributions

from the Hamiltonian in (4.12) (Girolami and Calderhead, 2011). Repeating above

steps defines reversible moves on joint parameter space of ✓ and q and it keeps the

Hamiltonian Hp✓, qq invariant. Independent draws from q allows HMC to perform

large moves in p✓, qq. Therefore, HMC allows large moves in ✓ and enhances the

mixing behavior of the Markov chain. Due to factorization of the joint density, the

Markov chain by discarding q targets the distribution pp✓q (Neal, 2011).
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The numerical integration methods used in Hamiltonian dynamics have direct

connections with Langevin di↵usion with stochastic di↵erential equation defined as

d✓ptq “

1

2
r

✓

`p✓qdt ` dbptq,

where bptq is a d dimensional Brownian motion (Neal, 2011; Girolami and Calderhead,

2011). The parameter space with the Hamiltonian dynamics (4.13) is endowed with

Euclidean space with identity metric by using gradient of the log density.

The generalization of the Euclidean space to a Riemannian manifold has lead

to using other metric tensors in the parameter space (Efron, 1975; Amari, 1998;

Raskutti and Mukherjee, 2015). In particular, when the parameter ✓ is in a Rieman-

nian manifold with metric tensor of Gp✓q, the Hamiltonian becomes (Girolami and

Calderhead, 2011; Byrne and Girolami, 2013)

Hp✓, qq “ ´`p✓q `

1

2
log

`

|Gp✓q|

˘

`

1

2
q

J
Gp✓q

´1
q. (4.15)

The density function in `p✓q is defined with respect to Lebesgue measure in some

coordinate system ✓. The log determinant term on the right hand side of the equa-

tion is introduced to satisfy that the marginal density ✓ equals to the target. This

Hamiltonian can be viewed as letting auxiliary variable q „ Np0,Gp✓qq. Byrne and

Girolami (2013) notice that the first two terms on the right hand side of (4.15) can

be combined to generate a density function with respect to Hausdor↵ measure `Hp✓q.

The resulting Hamiltonian becomes

Hp✓, qq “ ´`Hp✓q `

1

2
q

J
Gp✓q

´1
q. (4.16)

This is due to equation (4.11) in Theorem 4.1. The Hamiltonian dynamics in (4.13)

become

d✓

dt
“

BHp✓, qq

Bq

“ Gp✓q

´1
q,
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dq

dt
“ ´

BHp✓, qq

B✓

“ r
✓

ˆ

`Hp✓q ´

1

2
q

J
Gp✓q

´1
q

˙

. (4.17)

This Hamiltonian is not separable therefore original leapfrog method does not apply.

Geodesic integrator

Byrne and Girolami (2013) construct an integrator by splitting the Hamiltonian in

(4.17) to a potential and kinetic term

Hp1q
p✓, qq “ ´`Hp✓q, (4.18)

Hp2q
p✓, qq “

1

2
q

J
Gp✓q

´1
q. (4.19)

The potential term in (4.18) does not involve q therefore d✓{dt “ 0. dq{dt is simply

r
✓

`Hp✓q. For the kinetic term in (4.19), it is an Hamiltonian without potential term.

Byrne and Girolami (2013) show that the solution in the dynamics is geodesic flow

with metric tensor Gp✓q. In summary the Hamiltonian dynamics for (4.17) become

• Update q according to the solution in (4.18) for ✏{2

q

1
“ q `

✏

2
r

✓

`Hp✓q, (4.20)

• Update p✓, qq according to (4.19) following geodesic flow for ✏,

• Update q again using (4.20) for ✏{2.

Manifold HMC with embedding coordinates

We re-write the Riemannian manifold HMC in (4.16) by coordinate embedding

(Byrne and Girolami, 2013). Given an isometric embedding ⇠ : M Ñ Rd, a motion

on the original space ✓ptq with t ° 0 has an image xptq on Rd with xptq “ ⇠r✓ptqs.

In addition, we have

dx
i

ptq

dt
“

ÿ

j

Bx
i

B✓
j

d✓
j

ptq

dt
,
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where we let subscript j index the coordinate of ✓ and subscript i index the coordinate

of x. Therefore we get dx{dt “ Md✓{dt with M is the derivative matrix defined in

(4.10) and G “ M

J
M . Then if we transform p✓, qq to the embedding space px,vq

with v “ dx{dt, we get

v “

dx

dt
“ M

d✓

dt
“ MpM

J
Mq

´1
q.

Furthermore, if we make the transformation, the original Hamiltonian (4.16) becomes

(Byrne and Girolami, 2013)

Hpx,vq “ ´`Hpxq `

1

2
v

J
v. (4.21)

According to Byrne and Girolami (2013) there is no additional Jacobian term intro-

duced because `Hpxq is still defined with respect to Hausdor↵ measure. With this

transformation, the solution to the potential term in (4.18) can be written in the

new coordinates by change of variables of the operator r
✓

“ M

Jr
x

v

1
“ v `

✏

2
MpM

J
Mq

´1
M

Jr
x

`pxq.

The term MpM

J
Mq

´1
M

J is the orthogonal projection matrix by projecting the

gradient of `pxq to the column space of M . As shown by Byrne and Girolami (2013),

this is the tangent space of the embedded manifold. In our problem, x P Sd´1. For

arbitrary vector u, the projection of u to the tangent space of x is given by

u

Tx

“ pI ´ xx

J
qu.

Therefore the solution to the potential term in (4.18) in the new coordinate becomes

v

1
“ v `

✏

2
pI ´ xx

J
qr

x

`pxq.

For the solution to the kinetic term in (4.19), we have a closed form solution due

to our sphere parameterization. The geodesic flow on the sphere is shown to be

pxptq,vptqq “ pxp0q,vp0qq

ˆ

1 0
0 c´1

˙ ˆ

cospctq ´ sinpctq
sinpctq cospctq

˙ ˆ

1 0
0 c

˙

, (4.22)
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where c “ vptqJ
vptq is constant.

We summarize our geodesic Riemannian manifold HMC steps to draw posterior

samples from distribution in (4.9) defined on Sd´1 in Algorithm 4.1. Note that we

do not need to evaluate the normalizing constant of the density ppx

jh

q in (4.9) due

to following two reasons. First, when we calculate the gradient of the log density

`px
jh

q, only the terms in the exponential function matter. Second, when we define

the Hamiltonian in (4.15) and (4.16), the normalizing constant does not depends on

either ✓ or q. Therefore it can be removed from the Hamiltonian.

Algorithm 4.1: Geodesic Riemannian manifold Hamiltonian Monte Carlo al-
gorithm to draw samples from log density `pxq

Input : the number of steps T for integration and step size
Output: One draw from density `pxq

1 v „ N
d

p0, Iq; v “ pI ´ xx

J
qv;

2 l0 “ `pxq ´

1
2v

J
v; x0 “ x;

3 for t – 1 to T do
4 v “ v `

✏

2rx

`pxq; v “ pI ´ xx

J
qv;

5 Update px,vq following geodesic flow in (4.22) for ✏;
6 v “ v `

✏

2rx

`pxq; v “ pI ´ xx

J
qv;

7 end

8 l1 “ `pxq ´

1
2v

J
v;

9 u „ Unifp0, 1q;
10 if u † exppl1 ´ l0q then
11 return x;
12 else
13 return x0;
14 end

4.3.3 An additional example

Other than the distribution defined in (4.9), we consider another distribution defined

on a specific manifold in this subsection, the Bingham-von Mises-Fisher distribution.

This distribution is defined on Stiefel manifold Vpp, kq, the set of orthonormal matrix

X of dimension p ˆ k (k § p) such that X

J
X “ I

k

. This Stiefel manifold is of

115



dimension pk ´ ppp ` 1q{2 and it is embedded in the Euclidean space Rpˆk (Absil

et al., 2009). When k “ 1 the Stiefel manifold becomes a sphere. The Bingham-von

Mises-Fisher (BMF) distribution specifies an absolutely continuous density on the

Stiefel manifold Vpp, kq. This distribution is studied by Bingham (1974) for a vector

defined on sphere (k “ 1) and has been considered for matrix form with k ° 1 by

Khatri and Mardia (1977). Recently several papers have investigated applications of

such a distribution (Ho↵, 2009a,b; Byrne and Girolami, 2013).

The BMF distribution is defined as

ppX|A,B,Cq 9 etrpCJ
X ` BX

J
AXq

“ exp

ˆ

k

ÿ

h

c

J
h

x

h

˙

exp

ˆ

k

ÿ

h

b
h

x

J
h

Ax

h

˙

, (4.23)

where x
h

is the hth column of X, c
h

is the hth column of C and b
h

is the hth diag-

onal entry of B. We assume B is a diagonal matrix and A is a symmetric matrix

to satisfy the antipodally symmetric property (Ho↵, 2009a). The density reduces to

Bingham density when C “ 0 and von Mises-Fisher density when either A or B is

zero. When k “ 1 the density defines a distribution on unit sphere. Sampling from

this distribution has many potential applications including covariance matrix esti-

mation, orthogonal factor analysis, probabilistic singular value/eigen decomposition

and network analysis (Ho↵, 2009a,b; Zhong and Girolami, 2012).

To e�ciently draw samples from the distribution in (4.23) has been shown a

challenging task (Ho↵, 2009b; Rao et al., 2014). We use the geodesic Riemannian

manifold HMC introduced in previous subsection to draw samples from such a density

(Byrne and Girolami, 2013). We introduce the momentum variable V P Rpˆk. We

require following two ingredients to implement a geodesic HMC sampler.
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Projection of gradient to tangent space We first calculate the gradient of the log density

as follows

r
X

logrppXqs “

B logrppXqs

BX

“

1

ppXq

BppXq

X

“

1

ppXq

ppXq

BtrpCJ
X ` BX

J
AXq

BX

“ C ` 2AXB.

According to Byrne and Girolami (2013), the projection of arbitrary matrix V P Rpˆk

to the tangent space of X can be written as

V

Tx

“ V ´

1

2
X

`

X

J
V ` V

J
X

˘

.

Geodesic flow on Stiefel manifold The geodesic flow has been shown to have following

form (Edelman et al., 1998; Byrne and Girolami, 2013)

pXptq,V ptqq “ pXp0q,V p0qq exp

ˆ

t

ˆ

A ´Sp0q

I A

˙˙ ˆ

expp´tAq 0
0 expp´tAq

˙

,

(4.24)

where A “ XptqJ
V ptq is a skew-symmetric matrix and it is constant over the

geodesic. Sp0q “ V p0q

J
V p0q and expp¨q is the matrix exponential function.

With the two ingredients, we could define following algorithm to draw samples

from the Bingham-von Mises-Fisher distribution

4.4 Simulations

4.4.1 Bayesian GMM in MELD

In this subsection we apply our Bayesian GMM approach developed for MELD in two

simulation studies performed in Chapter 3. For first simulation study, we consider

the low dimensional setting with p “ 20 and apply our approach with both pseudo-

likelihood functions in (4.1) and (4.2). For the second simulation study we consider
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Algorithm 4.2: Geodesic Riemannian manifold Hamiltonian Monte Carlo al-
gorithm to draw samples from Bingham-von Mises-Fisher distribution (4.23)

Input : the number of steps T for integration and step size
Output: One draw from density in (4.23)

1 V „ N
pˆk

p0, Iq; V “ V ´

1
2X

`

X

J
V ` V

J
X

˘

;
2 l0 “ logrppXqs ´

1
2vecpV q

JvecpV q; X0 “ X;
3 for t – 1 to T do
4 V “ V `

✏

2rX

logrppXqs; V “ V ´

1
2X

`

X

J
V ` V

J
X

˘

;
5 Update pX,V q following geodesic flow in (4.24) for ✏;
6 V “ V `

✏

2rX

logrppXqs; V “ V ´

1
2X

`

X

J
V ` V

J
X

˘

;
7 end

8 l1 “ logrppXqs ´

1
2vecpV q

JvecpV q;
9 u „ Unifp0, 1q;

10 if u † exppl1 ´ l0q then
11 return X;
12 else
13 return X0;
14 end

the mixed data type setting with categorical, Gaussian and Poisson variables with

p “ 100. Pseudo-likelihood (4.1) with only second moment matrices is used in this

case. For all the simulation studies, we set the Dirichlet hyperparameter �
c

for the

prior of �
jh

to 0.5 when jth variable is categorical. The hyperparameters of prior

for �
jh

for non-categorical variables are set to µ0 “ 0 and �0 “ 10. a
⌧

and b
⌧

are set

to 1 and 0.3 respectively. This configuration corresponds to letting p⌧ p¨q
q

´1 to have

a prior mean of 3.3 and variance of 11.1. For the geodesic sampler, the integration

step size is set to ✏ “ 0.01 and the number of steps in the numerical integration is

set to 10 for the pseudo-likelihood in (4.1) and 5 for the pseudo-likelihood in (4.2).

Low dimensional categorical simulations The process of generating data in this sim-

ulation is the same as in Chapter 3. Each of the p “ 20 categorical variables

has d “ 4 levels. The number of components is set to k “ 3 and we simulate

n “ t50, 100, 200, 500, 1, 000u samples. We contaminate 4% and 10% samples to as-
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sess the robustness of our methods. We run our MCMC algorithm on the simulated

data for 10, 000 iterations. We set the first 5, 000 as burn-in period and collect a

posterior sample every 50 iterations. We use the same method in Chapter 3 to cal-

culate the MSE of estimated mean parameters of y
ij

’s and their true parameters by

recovering membership variables (Table 4.1, 4.2, 4.3). Our Bayesian GMM approach

with the likelihood Lp2q
p�q has better MSE’s in most of the cases. The log likelihood

trajectories with n “ 1, 000 are shown in Figure 4.1 and 4.2. The Markov chains mix

well for the likelihood Lp2q
p�q. However with the likelihood of Lp3q

p�q and k “ 1

and k “ 2 the chains do not show a good mixing (Figure 4.2).

Table 4.1: Comparison of mean squared error (MSE) of estimated parameters in cat-
egorical simulation with small p using Bayesian GMM method and GMM in MELD.
For GMM estimation its standard deviations of MSE’s are calculated from ten sim-
ulated data sets for each value of n. For the Bayesian GMM method the standard
deviations of MSE’s are calculated using posterior mean estimates of the ten simu-
lated data sets.

Methods GMM Qp2qp�q GMM Qp3qp�q BGMM Lp2qp�q BGMM Lp3qp�q

n k 1st stage 2nd stage 1st stage 2nd stage MSE MSE

50

1 0.043(0.002) 0.042(0.002) 0.044(0.002) 0.084(0.040) 0.042(0.002)
2 0.035(0.001) 0.046(0.010) 0.035(0.002) 0.075(0.035) 0.032(0.001)

3 0.036(0.002) 0.038(0.002) 0.037(0.002) 0.074(0.034) 0.029(0.001)

4 0.041(0.002) 0.044(0.002) 0.042(0.003) 0.044(0.002) 0.032(0.002)

5 0.045(0.002) 0.046(0.002) 0.044(0.002) 0.048(0.002) 0.038(0.005)

100

1 0.041(0.001) 0.041(0.001) 0.042(0.001) 0.068(0.045) 0.041(0.001)
2 0.031(0.002) 0.033(0.005) 0.031(0.001) 0.044(0.029) 0.030(0.001)

3 0.033(0.002) 0.034(0.002) 0.033(0.002) 0.050(0.030) 0.028(0.001)

4 0.037(0.002) 0.038(0.002) 0.038(0.001) 0.039(0.002) 0.031(0.001)

5 0.041(0.003) 0.041(0.003) 0.039(0.002) 0.043(0.002) 0.037(0.004)

200

1 0.041(†0.001) 0.041(†0.001) 0.042(†0.001) 0.041(†0.001) 0.041(†0.001)
2 0.030(0.001) 0.030(0.001) 0.029(0.001) 0.029(0.001) 0.029(0.001)
3 0.033(0.001) 0.033(0.001) 0.032(0.001) 0.033(0.001) 0.028(0.001)

4 0.036(0.001) 0.037(0.001) 0.036(0.002) 0.037(0.001) 0.031(0.001)

5 0.038(†0.001) 0.036(0.001) 0.038(0.001) 0.039(0.001) 0.037(0.004)

500

1 0.041(†0.001) 0.041(†0.001) 0.041(†0.001) 0.041(†0.001) 0.041(†0.001)
2 0.029(0.001) 0.030(0.001) 0.029(0.001) 0.029(0.001) 0.029(0.001)
3 0.032(0.001) 0.032(0.001) 0.032(0.001) 0.032(0.001) 0.029(0.001)

4 0.035(0.001) 0.036(0.001) 0.035(0.001) 0.036(0.001) 0.030(0.001)

5 0.036(0.001) 0.035(0.001) 0.036(0.001) 0.038(0.001) 0.036(0.003)

1,000

1 0.041(0.001) 0.041(0.001) 0.041(0.001) 0.041(0.001) 0.041(†0.001)

2 0.029(0.001) 0.029(0.001) 0.028(0.001) 0.028(0.001) 0.028(†0.001)

3 0.031(0.001) 0.031(0.005) 0.031(0.001) 0.031(0.001) 0.029(†0.001)

4 0.034(0.001) 0.034(0.001) 0.034(0.001) 0.034(0.001) 0.030(†0.001)

5 0.036(0.001) 0.034(0.001) 0.036(0.001) 0.037(0.001) 0.036(0.003)

We further monitor the objective functions of Qp2q
n

p�, Iq and Qp3q
n

p�, Iq defined in

Chapter 3 equation (3.14) and (3.15). With likelihood Lp2q
p�q the objective function
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Table 4.2: Comparison of mean squared error (MSE) of estimated parameters in cat-
egorical simulation with small p using Bayesian GMM method and GMM in MELD.
The simulated ten data sets are contaminated by setting 4% of the samples to out-
liers. The MSE’s are calculated with the same methods in Table 4.1.

Methods GMM Qp2qp�q GMM Qp3qp�q BGMM Lp2qp�q

n k 1st stage 2nd stage 1st stage 2nd stage MSE

50

1 0.043(0.002) 0.043(0.002) 0.044(0.002) 0.061(0.024) 0.042(0.002)

2 0.036(0.001) 0.039(0.005) 0.036(0.003) 0.058(0.038) 0.034(0.001)

3 0.037(0.002) 0.038(0.002) 0.037(0.002) 0.052(0.021) 0.031(0.001)

4 0.041(0.001) 0.044(0.002) 0.043(0.002) 0.050(0.007) 0.035(0.002)

5 0.046(0.001) 0.048(0.002) 0.044(0.002) 0.050(0.003) 0.039(0.004)

100

1 0.041(0.001) 0.041(0.001) 0.042(0.001) 0.041(0.002) 0.041(0.001)
2 0.032(0.001) 0.032(0.002) 0.032(0.002) 0.032(0.002) 0.032(0.001)
3 0.033(0.002) 0.034(0.002) 0.033(0.002) 0.036(0.008) 0.030(0.001)

4 0.038(0.001) 0.040(0.001) 0.038(0.002) 0.040(0.003) 0.033(0.001)

5 0.043(0.002) 0.044(0.002) 0.043(0.003) 0.046(0.003) 0.040(0.004)

200

1 0.041(†0.001) 0.041(†0.001) 0.042(†0.001) 0.048(0.020) 0.041(†0.001)
2 0.031(0.001) 0.031(0.001) 0.030(0.001) 0.032(0.005) 0.031(0.001)
3 0.033(0.001) 0.033(0.001) 0.032(0.001) 0.033(0.001) 0.030(0.001)

4 0.038(0.002) 0.039(0.002) 0.038(0.002) 0.039(0.002) 0.033(0.001)

5 0.041(0.001) 0.041(0.002) 0.042(0.003) 0.044(0.003) 0.039(0.004)

500

1 0.041(0.001) 0.041(0.001) 0.041(0.001) 0.041(0.001) 0.041(0.001)
2 0.030(0.001) 0.031(0.001) 0.029(0.001) 0.030(0.001) 0.031(†0.001)
3 0.032(0.001) 0.033(0.001) 0.032(0.001) 0.032(0.001) 0.031(†0.001)

4 0.037(0.001) 0.038(0.001) 0.038(0.001) 0.039(0.001) 0.033(†0.001)

5 0.040(0.001) 0.040(0.001) 0.043(0.003) 0.045(0.002) 0.037(0.003)

1,000

1 0.041(†0.001) 0.041(†0.001) 0.041(†0.001) 0.041(†0.001) 0.041(†0.001)
2 0.030(0.001) 0.030(0.001) 0.029(†0.001) 0.030(†0.001) 0.031(†0.001)
3 0.031(†0.001) 0.032(†0.001) 0.031(†0.001) 0.031(†0.001) 0.031(†0.001)
4 0.037(0.001) 0.038(0.001) 0.038(0.001) 0.039(0.001) 0.032(0.001)

5 0.040(†0.001) 0.039(0.001) 0.043(0.002) 0.044(0.002) 0.038(0.002)

Figure 4.1: The trajectories of the log likelihood functions Lp2q
p�q for the low

dimensional categorical simulation with n “ 1, 000 under di↵erent values of k.
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Table 4.3: Comparison of mean squared error (MSE) of estimated parameters in cat-
egorical simulation with small p using Bayesian GMM method and GMM in MELD.
The simulated ten data sets are contaminated by setting 10% of the samples to
outliers. The MSE’s are calculated with the same methods in Table 4.1.

Methods GMM Qp2qp�q GMM Qp3qp�q BGMM Lp2qp�q

n k 1st stage 2nd stage 1st stage 2nd stage MSE

50

1 0.044(0.002) 0.044(0.001) 0.044(0.002) 0.057(0.017) 0.043(0.002)

2 0.041(0.003) 0.044(0.006) 0.045(0.006) 0.060(0.025) 0.040(0.001)

3 0.045(0.003) 0.046(0.003) 0.052(0.006) 0.068(0.031) 0.039(0.002)

4 0.048(0.003) 0.051(0.003) 0.056(0.003) 0.061(0.008) 0.040(0.003)

5 0.053(0.002) 0.059(0.006) 0.057(0.003) 0.062(0.004) 0.041(0.002)

100

1 0.042(0.002) 0.043(0.003) 0.042(0.002) 0.044(0.006) 0.042(0.002)
2 0.040(0.002) 0.040(0.002) 0.050(0.005) 0.047(0.005) 0.040(0.002)
3 0.044(0.002) 0.044(0.002) 0.054(0.003) 0.054(0.004) 0.041(0.001)

4 0.047(0.002) 0.049(0.002) 0.056(0.002) 0.058(0.003) 0.042(0.002)

5 0.051(0.003) 0.054(0.003) 0.055(0.004) 0.059(0.004) 0.042(0.002)

200

1 0.043(0.001) 0.043(0.001) 0.042(0.001) 0.043(†0.001) 0.043(0.001)
2 0.039(0.001) 0.039(0.001) 0.050(0.002) 0.044(0.001) 0.039(0.001)
3 0.041(0.002) 0.042(0.001) 0.052(0.001) 0.052(0.002) 0.039(0.001)

4 0.047(0.002) 0.048(0.002) 0.056(0.002) 0.057(0.002) 0.039(0.001)

5 0.050(0.002) 0.053(0.002) 0.054(0.002) 0.058(0.002) 0.042(0.001)

500

1 0.042(0.001) 0.042(0.001) 0.042(0.001) 0.042(0.001) 0.042(0.001)
2 0.039(0.001) 0.039(0.001) 0.050(0.001) 0.044(0.001) 0.039(0.001)
3 0.040(0.001) 0.040(0.001) 0.051(0.001) 0.051(0.001) 0.038(0.001)

4 0.046(0.001) 0.048(0.001) 0.056(0.001) 0.057(0.001) 0.039(0.001)

5 0.050(0.002) 0.053(0.001) 0.054(0.001) 0.058(0.001) 0.041(0.002)

1,000

1 0.042(†0.001) 0.042(†0.001) 0.042(†0.001) 0.042(†0.001) 0.043(†0.001)
2 0.040(†0.001) 0.039(†0.001) 0.050(0.001) 0.045(0.001) 0.039(0.001)
3 0.039(†0.001) 0.040(†0.001) 0.051(†0.001) 0.051(0.001) 0.038(0.001)

4 0.047(†0.001) 0.048(†0.001) 0.056(0.001) 0.057(0.001) 0.039(0.001)

5 0.050(0.001) 0.052(0.001) 0.054(0.001) 0.058(0.001) 0.043(0.001)

Figure 4.2: The trajectories of the log likelihood functions Lp3q
p�q for the low

dimensional categorical simulation with n “ 1, 000 under di↵erent values of k.
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of Qp2q
n

p�, Iq decreases fast in the first several iterations. Then the objective stays

relatively stable. The minimum value is achieved with k “ 3 (Figure 4.3). With

the likelihood Lp3q
p�q, the objective function Qp3q

n

p�, Iq also decreases dramatically

in the first few iterations. Moreover we observe that when the value of k is less

than the correct value 3, the objective function diverges after a number of iterations.

This results echo their poor mixing behaviors shown in the likelihood trajectories

(Figure 4.2). With larger values of k, the objective function becomes stable. The

minimum value of the objective function is also achieved with the correct value of

k “ 3 (Figure 4.4). The posterior trajectories of one component parameter �
jh

with

the two likelihood functions are also plotted in Figure 4.5 and Figure 4.6 respectively.

Figure 4.3: The trajectories of Qp2q
n

p�, Iq defined in Chapter 3 equation (3.14) for
the low dimensional categorical simulation with n “ 1, 000 under di↵erent values of
k. The last 2, 000 iterations are plotted in the zoomed panel.

Mixed data types with categorical, Gaussian and Poisson variables We simulate 100

variables with first 95 being categorical variables with d “ 4 levels, two Gaussian

variables and three Poisson variables. k is set to 2 and n “ t50, 100, 200, 500, 1, 000u

samples are generated. We run our MCMC algorithm with likelihood Lp2q
p�q only
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Figure 4.4: The trajectories of Qp3q
n

p�, Iq defined in Chapter 3 equation (3.15) for
the low dimensional categorical simulation with n “ 1, 000 under di↵erent values of
k. The last 2, 000 iterations are plotted in the zoomed panel.

Figure 4.5: The trajectories of posterior draws of one component parameter �

jh

with likelihood Lp2q
p�q for the low dimensional categorical simulation with n “ 1, 000

under di↵erent values of k. Di↵erent coordinates in �

jh

are shown by di↵erent colors.
True values are plotted as dotted lines.

on the data for 10, 000 iterations with first 5, 000 iterations as burn-in. Posterior

samples are collected every 50 iterations after the burn-in period. We calculate the
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Figure 4.6: The trajectories of posterior draws of one component parameter �

jh

with likelihood Lp3q
p�q for the low dimensional categorical simulation with n “ 1, 000

under di↵erent values of k. Di↵erent coordinates in �

jh

are shown by di↵erent colors.
True values are plotted as dotted lines.

MSE of estimated mean parameters of y
ij

’s and their true parameters by recovering

their membership variables (Table 4.4). For non-categorical data squared Euclidean

distance is used to recover membership variable using equation (3.23). The Bayesian

GMM approach achieves smallest MSE’s for categorical data under di↵erent values

of n when k ° 1. For k “ 1 the GMM first stage estimation has the smallest

MSE’s. For Gaussian variables the Bayesian GMM approach has smallest MSE’s

under small values of n (50, 100 and 200) with the correct value of k “ 2. When

n is large, GMM with second stage estimation outperforms alternatives with k “ 2.

For Poisson variables, the Bayesian GMM approach consistently has smallest MSE’s

under di↵erent values of n when k “ 2.
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Figure 4.7: The trajectories of the log likelihood functions Lp2q
p�q for mixed data

type simulation with n “ 1, 000 under di↵erent values of k.

Figure 4.8: The trajectories of Qp2q
n

p�, Iq defined in Chapter 3 equation (3.14) for
the mixed data type simulation with n “ 1, 000 under di↵erent values of k. The last
2, 000 iterations are plotted in the zoomed panel.

125



T
ab

le
4.
4:

M
ea
n
sq
u
ar
ed

er
ro
r
(M

S
E
)
of

p
ar
am

et
er

es
ti
m
at
io
n
in

si
m
u
la
ti
on

w
it
h
ca
te
go
ri
ca
l,
G
au

ss
ia
n
,
P
oi
ss
on

m
ix
ed

va
ri
ab

le
s
u
si
n
g
B
ay
es
ia
n
G
M
M

an
d
G
M
M

in
M
E
L
D
.
F
or

G
M
M

es
ti
m
at
io
n
it
s
st
an

d
ar
d
d
ev
ia
ti
on

s
of

M
S
E
’s
ar
e
ca
lc
u
la
te
d

fr
om

p
ar
am

et
er

es
ti
m
at
es

in
te
n
d
at
a
se
ts
,a

n
d
ar
e
p
ro
vi
d
ed

in
p
ar
en
th
es
es

of
M
S
E
co
lu
m
n
.
F
or

th
e
B
ay
es
ia
n
G
M
M

m
et
h
od

th
e
st
an

d
ar
d
d
ev
ia
ti
on

s
of

M
S
E
’s

ar
e
ca
lc
u
la
te
d
fr
om

p
os
te
ri
or

m
ea
n
es
ti
m
at
es

of
th
e
te
n
d
at
a
se
ts
.
F
or

n
on

-c
at
eg
or
ic
al

d
at
a
sq
u
ar
ed

E
u
cl
id
ea
n
d
is
ta
n
ce

is
u
se
d
to

re
co
ve
r
m
em

b
er
sh
ip

va
ri
ab

le
.

C
a
te
g
o
ri
ca

l
G
a
u
ss
ia
n

P
o
is
so
n

G
M
M

Q

p2
q p
�

q
G
M
M

Q

p2
q p
�

q
G
M
M

Q

p2
q p
�

q
n

k
1
st

st
a
g
e

2
n
d
st
a
g
e

B
G
M
M

L

p2
q p
�

q
1
st

st
a
g
e

2n
d
st
a
g
e

B
G
M
M

L

p2
q p
�

q
1
st

st
a
g
e

2
n
d
st
a
g
e

B
G
M
M

L

p2
q p
�

q

5
0

1
0
.0
1
0
(1

.3
e
-3

)
0
.0
1
0
(2
.3
e-
3
)

0
.0
1
3
(0
.4
e-
3
)

9.
40

3
(0
.4
4
8
)

9
.4
1
9
(2
.2
7
0
)

8
.7
4
2
(0

.0
1
7
)

6
.7
9
9
(0

.4
4
0
)

7
.1
2
5
(2
.1
4
4
)

7
.9
2
8
(0
.3
4
3
)

2
0
.0
2
1
(3
.2
e-
3
)

0
.0
2
1
(4
.7
e-
3
)

0
.0
1
1
(0

.2
e
-3

)
0
.6
3
3
(0
.8
8
0
)

1
.0
7
0
(3
.3
8
9
)

0
.2
7
1
(0

.0
6
6
)

4
.4
4
4
(0
.5
9
3
)

5
.1
6
5
(5
.3
2
3
)

3
.9
8
4
(0

.1
5
3
)

3
0
.0
3
6
(5
.4
e-
3
)

0
.0
3
5
(4
.4
e-
3
)

0
.0
1
9
(0

.4
e
-3

)
1
.3
5
4
(0
.8
3
8
)

1
.3
4
6
(0

.8
4
1
)

1
.4
3
0
(0
.3
6
1
)

5
.6
7
4
(0
.9
4
6
)

5
.6
9
6
(0
.9
4
7
)

5
.5
0
9
(0

.6
0
0
)

4
0
.0
4
8
(5
.4
e-
3
)

0
.0
4
7
(5
.2
e-
3
)

0
.0
2
6
(0

.6
e
-3

)
2
.4
3
5
(1
.1
4
5
)

1
.9
9
8
(1
.1
6
4
)

1
.1
3
5

(0
.5
8
1
)

6
.5
5
9
(1

.2
7
8
)

6
.5
8
7
(1
.3
0
4
)

7
.9
1
6
(0
.8
9
2
)

1
0
0

1
0
.0
0
6
(0

.5
e
-3

)
0
.0
0
7
(5
.5
e-
3
)

0
.0
1
3
(1
.1
e-
3
)

9.
81

5
(0
.4
3
8
)

9
.5
0
3
(0
.3
3
7
)

8
.9
9
8
(0

.0
1
5
)

6
.7
1
8
(0

.2
8
1
)

7
.6
7
7
(7
.1
4
6
)

1
0
.4
4
5
(0
.5
8
2
)

2
0
.0
1
1
(1
.2
e-
3
)

0
.0
1
1
(1
.2
e-
3
)

0
.0
0
6
(0

.1
e
-3

)
0
.8
8
0
(0
.2
8
8
)

0
.3
4
5
(0
.2
8
3
)

0
.1
1
4
(0

.0
9
1
)

4
.7
8
0
(0
.5
0
1
)

4
.7
7
2
(0
.5
0
3
)

4
.1
1
1
(0

.1
7
2
)

3
0
.0
2
0
(2
.1
e-
3
)

0
.0
2
0
(2
.0
e-
3
)

0
.0
1
0
(0

.5
e
-3

)
0
.8
3
8
(0

.6
5
1
)

1
.4
9
4
(0
.6
6
8
)

2
.0
6
5
(0
.4
3
0
)

5
.6
5
8
(0

.7
8
5
)

5
.6
8
0
(0
.7
7
0
)

5
.7
1
0
(0
.5
6
1
)

4
0
.0
2
9
(1
.9
e-
3
)

0
.0
2
8
(1
.8
e-
3
)

0
.0
1
5
(0

.6
e
-3

)
1
.1
4
5
(0

.6
6
8
)

2
.4
6
2
(0
.6
7
5
)

1
.9
6
7
(1
.4
2
4
)

7
.4
8
0
(0
.9
5
1
)

7
.4
9
3
(0
.9
3
4
)

7
.3
8
6
(0

.9
0
9
)

2
0
0

1
0
.0
0
4
(0

.2
e
-3

)
0
.0
0
5
(0
.1
e-
3
)

0
.0
1
2
(1
.1
e-
3
)

9.
99

2
(0
.3
5
7
)

9
.6
4
7
(0
.4
3
0
)

9
.0
0
8
(0

.0
0
9
)

6
.5
2
2
(0
.1
5
4
)

6
.4
5
1
(0

.1
2
6
)

1
0
.0
9
5
(0
.5
8
0
)

2
0
.0
0
6
(0
.4
e-
3
)

0
.0
0
6
(0
.1
e-
3
)

0
.0
0
4
(0

.1
e
-3

)
0
.1
2
1
(0
.1
4
0
)

0
.1
1
7
(0
.1
3
5
)

0
.1
1
1
(0

.0
6
2
)

4
.6
0
6
(0
.2
6
6
)

4
.6
0
7
(0
.2
6
7
)

4
.3
0
5
(0

.2
2
7
)

3
0
.0
1
1
(1
.2
e-
3
)

0
.0
1
0
(0
.6
e-
3
)

0
.0
0
6
(0

.5
e
-3

)
1
.5
6
6
(0

.4
9
0
)

1
.5
8
6
(0
.4
9
6
)

1
.6
9
5
(0
.4
1
7
)

6
.2
0
3
(0
.5
9
7
)

6
.2
0
0
(0

.5
9
7
)

6
.4
9
6
(0
.9
1
0
)

4
0
.0
1
8
(1
.7
e-
3
)

0
.0
1
8
(1
.1
e-
3
)

0
.0
0
9
(0

.7
e
-3

)
3
.2
4
3
(0
.6
6
0
)

3
.2
5
7
(0
.6
6
5
)

0
.8
9
1
(0

.6
0
0
)

7
.1
2
1
(0

.7
6
3
)

7
.1
2
3
(0
.7
6
9
)

8
.3
8
6
(1
.4
0
6
)

5
0
0

1
0
.0
0
3
(0

.1
e
-3

)
0
.0
0
3
(0
.1
e-
3
)

0
.0
0
9
(2
.1
e-
3
)

9.
72

6
(0
.2
4
0
)

9
.4
4
7
(0
.1
8
5
)

9
.0
3
3
(0

.0
1
6
)

6
.4
4
2
(0

.1
1
0
)

6
.4
5
4
(0
.4
9
3
)

9
.3
4
9
(1
.4
2
9
)

2
0
.0
0
3
(0
.1
e-
3
)

0
.0
0
3
(0
.8
e-
3
)

0
.0
0
2
(†

0
.1
e
-3

)
0
.0
8
3
(0
.0
4
6
)

0
.0
8
3
(0

.0
4
5
)

0
.1
6
0
(0
.0
5
6
)

4
.2
7
6
(0
.1
6
2
)

4
.2
7
3
(0
.1
6
3
)

4
.2
2
8
(0

.2
1
1
)

3
0
.0
0
6
(0
.6
e-
3
)

0
.0
0
6
(1
.3
e-
3
)

0
.0
0
4
(0

.2
e
-3

)
1
.5
2
1
(0

.3
5
5
)

1
.5
2
5
(0
.3
5
4
)

2
.2
2
2
(0
.5
3
2
)

5
.2
8
8
(0

.2
7
5
)

5
.2
8
9
(0
.2
7
8
)

5
.3
6
8
(0
.8
4
3
)

4
0
.0
1
1
(1
.2
e-
3
)

0
.0
1
0
(0
.8
e-
3
)

0
.0
0
5
(0

.4
e
-3

)
2
.8
5
5
(0
.2
4
3
)

2
.8
7
0
(0
.2
4
5
)

1
.9
7
4
(1

.3
3
7
)

5
.0
8
3
(0
.4
2
6
)

5
.0
8
2
(0

.4
3
0
)

5
.9
8
4
(0
.9
3
5
)

1
,0
0
0

1
0
.0
0
2
(0

.1
e
-3

)
0
.0
0
3
(2
.0
e-
3
)

0
.0
1
0
(1
.7
e-
3
)

9.
69

6
(0
.1
4
6
)

9
.4
1
3
(0
.1
0
6
)

9
.0
0
2
(0

.0
0
8
)

6
.3
7
6
(0
.0
6
0
)

6
.3
2
4
(0

.0
4
4
)

9
.9
5
1
(1
.2
3
4
)

2
0
.0
0
2
(0
.1
e-
3
)

0
.0
0
2
(0
.1
e-
3
)

0
.0
0
2
(†

0
.1
e
-3

)
0
.1
7
0
(0
.0
4
0
)

0
.1
6
7
(0

.0
3
6
)

0
.1
9
1
(0
.0
6
4
)

4
.6
9
7
(0
.1
1
3
)

4
.6
9
8
(0
.1
1
3

4
.5
1
1
(0

.2
4
3
)

3
0
.0
0
5
(0
.5
e-
3
)

0
.0
0
5
(0
.5
e-
3
)

0
.0
0
3
(0

.2
e
-3

)
1
.9
6
9
(0
.1
9
1
)

1
.9
6
7
(0

.1
9
3
)

2
.2
9
8
(0
.7
6
3
)

5
.8
6
5
(0
.2
3
9
)

5
.8
7
1
(0
.2
3
8
)

5
.6
6
7
(0

.7
1
3
)

4
0
.0
0
7
(0
.9
e-
3
)

0
.0
0
7
(0
.8
e-
3
)

0
.0
0
3
(0

.3
e
-3

)
3
.5
2
0
(0
.1
7
7
)

3
.5
3
3
(0
.1
7
7
)

2
.6
5
4
(1

.7
8
9
)

5
.1
6
4
(0

.2
4
7
)

5
.1
8
2
(0
.2
4
7
)

6
.3
1
6
(1
.0
3
9
)

126



We further plot the log likelihood of Lp2q
p�q (Figure 4.7), the objective function

Qp2q
p�q (Figure 4.8) and trajectories of mean parameters for categorical, Gaussian

and Poisson variables (Figure 4.9, 4.10 and 4.11). With k “ 1, the Markov chain

mixes poorly. The objective function also diverges after a number of iterations. With

other values of k, the Markov chains mix well. The values of objective function de-

crease greatly after a few iterations and then they stay stable. The smallest values of

the objective function are achieved under the correct value of k “ 2. The trajectories

of the three types of variables also indicate good mixing when k ° 1. With k “ 2,

the values of mean parameter converge to the true values.

Figure 4.9: The trajectories of posterior draws of one component parameter �

jh

for a categorical variable under di↵erent values of k are plotted. Results shown are
using likelihood Lp2q

p�q with n “ 1, 000. Di↵erent coordinates in �

jh

are shown by
di↵erent colors. True values are plotted as dotted lines.

4.4.2 Joint orthogonal diagonalization

To test the performance of our MCMC sampler on other manifolds, we diverge from

MELD framework for a while and consider a problem of joint diagonalization of mul-

tiple matrices (Zhong and Girolami, 2012). This problem requires drawing samples

127



Figure 4.10: The trajectories of posterior draws of mean parameter �
jh

under
di↵erent values of k for a Gaussian variable are plotted. Results shown are using
likelihood Lp2q

p�q with n “ 1, 000. Di↵erent components of the mean parameter are
shown by di↵erent colors. True values are plotted as dotted lines.

Figure 4.11: The trajectories of posterior draws of mean parameter �
jh

under
di↵erent values of k for a Poisson variable are plotted. Results shown are using
likelihood Lp2q

p�q with n “ 1, 000. Di↵erent components of the mean parameter are
shown by di↵erent colors. True values are plotted as dotted lines.
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from the Stiefel manifold Vpp, kq. Let M

p1q, ¨ ¨ ¨ ,M pmq
P Rpˆp be m matrices that

we want to perform joint diagonalization. We write following probabilistic model

M

pvq
“ U⇤pvq

U

J
` E

pvq, for v “ 1, . . . ,m, (4.25)

where U P Vpp, kq, ⇤pvq
“ diagp�pvq

1 , ¨ ¨ ¨ ,�pvq
k

q is a diagonal matrix and the entries of

E

pvq follows independent Gaussian distribution Np0, �2
v

q. This model assumes the m

matrices are noisy version of underlying m symmetric matrices with the same set of

eigenvectors. The likelihood can be shown to proportional to following term
m

π

v“1

p�2
v

q

´p

2{2 exp

ˆ

´

1

2�2
v

||M

pvq
´ U⇤pvq

U

J
||

2
F

˙

.

This problem has many applications. When those matrices are symmetric sample

covariance matrices under di↵erent conditions, this problem is related to the common

principal components analysis studied by Flury (1984). The moment tensor approach

introduced in Chapter 3 can also be treated as a joint diagonalization problem when

the third order moment tensor is projected to matrices by di↵erent random projection

vectors (Anandkumar et al., 2012b).

We define following prior distributions for the likelihood model 4.25. For �pvq
h

we assign �pvq
h

„ Np0, �2
v

⌧ 2
h

q. The parameter ⌧ 2
h

can be viewed as the signal-to-noise

ratio of the hth orthogonal latent factor. For U we assign an improper uniform prior

ppU q 9 1. We further assign hyper-prior distributions for �2
v

and ⌧ 2
h

as

�´2
v

„ Gapa
�

, b
�

q, ⌧´2
h

„ Gapa
⌧

, b
⌧

q.

With this setup, the posterior distributions for our model parameters can be

written as

• Posterior of �pvq
h

pp�pvq
h

|´q „ N

ˆ

⌧ 2
h

pu

J
h

M

pvq
u

h

q

⌧ 2
h

` 1
,
�2
v

⌧ 2
h

⌧ 2
h

` 1

˙

,

where M

pvq
“

`

M

pvq
` pM

pvq
q

J˘

{2 and u

h

is the hth column of U .
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• Posterior of U

ppU |´q 9

m

π

v“1

exp

ˆ

1

�2
v

trpM
pvq
U⇤pvq

U

J
q

˙

“ exp

ˆ

m

ÿ

v“1

k

ÿ

h“1

u

J
h

M

pvq
�pvq
h

�2
v

u

h

˙

“ exp

«

k

ÿ

h“1

u

J
h

ˆ

m

ÿ

v“1

M

pvq
�pvq
h

�2
v

˙

u

h

�

.

Note that his posterior distribution is not a standard BMF distribution in

(4.23) because each u

h

has its own coe�cient matrix in the quadratic form.

• Posterior of �´2
v

pp�´2
v

|´q „ Ga

ˆ

a
�

`

k

2
`

p2

2
, b

�

`

1

2
||M

pvq
´ U⇤pvq

U

J
||

2
F

`

1

2

k

ÿ

h“1

p�pvq
h

q

2

⌧ 2
h

˙

.

• Posterior of ⌧´2
h

pp⌧´2
h

|´q „ Ga

ˆ

a
⌧

`

m

2
, b

⌧

`

1

2

m

ÿ

v“1

p�pvq
h

q

2

�2
v

˙

.

We use the geodesic Riemannian manifold Hamiltonian Monte Carlo sampler in

Algorithm 4.2 to draw posterior samples of U from ppU |´q. We have shown the

geodesic flow on Vpp, kq. To construct the sampler we only need to derive the gradient

of its log density. Let A
h

“

∞

m

v“1 M
pvq
�pvq
h

{�2
v

. Then the gradient of the log posterior

has the form

B logrppU |´qs

BU

“ 2 pA1u1, ¨ ¨ ¨ ,A
k

u

k

q .

Our method distinguishes from previous joint diagonalization algorithms in that it

allows us to sample U jointly without using conditional Gibbs sampler for u
h

(Zhong
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and Girolami, 2012), resulting an e�cient sampler with fast mixing behavior as shown

in this simulation.

To evaluate the performance of our method, we generate m “ 10 matrices with

axis dimension p “ 10. We set k “ 3 and generate U P Vpp, kq as follows. We

first draw p samples from a standard p dimensional Gaussian distribution. Then

we calculate their sample covariance matrix. The first k eigenvectors of the sample

covariance matrix are used to constructU . The value of �pvq
h

is draw from Np0, 52q and

�2
v

is generated from the uniform distribution on p0, 1q. Errors are further generated

from Np0, �2
v

q for each matrix to form the observed M

pvq. The parameters for the

gamma distributions of �´2
v

and ⌧´2
h

are set to a
�

“ a
⌧

“ 1, b
�

“ b
⌧

“ 0.3. We

apply our method on the simulated data. For the geodesic sampler, the number of

numerical integration steps is set to 10 and the step size is set to ✏ “ 0.01. Figure

4.12 shows the results. The trajectory of the log likelihood function demonstrates

the overall good mixing behavior of our sampler. The Markov chain converges to the

high likelihood region after few iterations (Figure 4.12A). The posterior draws of the

first coordinate of U show that the geodesic HMC method is e�cient in sampling

from the Stiefel manifold Vp10, 3q. The values of the posterior draws cover the true

values of U well (Figure 4.12B). The trajectories of ⇤p1q also show good mixing

(Figure 4.12C). The values of �p1q
1 and �p1q

3 are shrunk to zero compared with their

true values. This can be seen from the posteriors of ⌧ 21 and ⌧ 23 in Figure 4.12D: Both

of ⌧ 21 and ⌧ 23 are concentrated on small values, making the variances of �p¨q
1 and �p¨q

3

small. In comparison, the value of �p1q
2 is not shrunk and the posterior of ⌧ 22 has

support on large values.
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Figure 4.12: Results of running geodesic HMC method for joint orthogonal di-
agonalization simulation. The number of latent orthogonal components k is set to
3. Panel A: The trajectory of log likelihood. Panel B: Posterior draws of the first
coordinate of U in the three components. Panel C: Posterior draws of the three
diagonal entries in ⇤p1q. Panel D: Posterior draws of hyperparameter ⌧ 2 in the three
components.

4.5 Discussion and conclusion

In this chapter we have proposed an e�cient Monte Carlo method for distributions

defined on manifolds. This is motivated by the aim of developing a Bayesian GMM

approach for the generalized Dirichlet latent variable model proposed in Chapter 3.

Using Bayesian GMM for MELD avoids specification of weight matrices in the ob-

jectives. Instead the weights are treated as unknown variables and their posteriors
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are computed using MCMC algorithms. In addition, Bayesian model selection meth-

ods can be used to assess the model fitness with di↵erent values of k. For example

we might be able to use nonparametric priors such as Dirichlet process prior in the

pseudo-likelihood framework.

The Monte Carlo method proposed in this chapter combines the Hamiltonian

Monte Carlo algorithm with a geodesic integrator. With the new method we are

able to sample from distributions defined on di↵erent manifolds, for example the

probability simplex and the Stiefel manifold consisting of orthonormal pˆk matrices.

We use the method in the posterior computations of the Bayesian GMM for MELD.

Results show the superior performance of our Bayesian GMM compared with original

GMM in simulations with categorical data and mixed data types. Then we use the

algorithm in another problem where multiple matrices are jointly diagonalized. The

problem can be further extended to common principal components analysis and

moment tensor decompositions.
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5

Concluding remarks

5.1 Summary

This dissertation addresses three important problems in modeling large scale multi-

variate data. The first problem is how to combinatorially model covariance structures

among multiple couple observations. The motivation for this research is that many

modern data sets are collected in a coupled manor. For example expression lev-

els for multiple genes could be measured under di↵erent conditions. Data of such

kind could be represented by multiple coupled matrices, with each matrix is also

known as a view. Researchers are particular interested in modeling covariance spe-

cific to each view and covariance among combinations of views. We address this

problem by developing a Bayesian group factor analysis model. The model assigns

a shrinkage prior organized into three levels on the loading matrix. The prior in-

duces both element-wise sparsity (variable selection) and column-wise sparsity (view

selection). The combination of both variable selection and view selection is a key

innovation of our new model. Variable selection generates interpretable factors and

view selection allows us to combinatorially model covariance structure among mul-
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tiple data sets. Using Bayesian shrinkage prior to achieve structured sparsity has

many advantages over the frequentist approach of generating sparse solutions using

regularization norms. First the uncertainty of parameter estimates could be assessed

by posterior computation using MCMC algorithms. Second, Bayesian approach al-

lows information to be borrowed through hierarchical parameterizations, generating

adapted shrinkage. Third, Bayesian approach using continuous priors generates a

continuous shrinkage across the real line. This continuous solution allows the priors

to have more customizable behaviors both around zero and at tails far away from

zero. Those advantages have been demonstrated by comparing our new model with

other models in simulation studies. We use our new model to real world applications

including multivariate response prediction, condition specific gene co-expression net-

work construction and document data analysis.

The second problem this dissertation aims to address is how to develop e�-

cient statistical models and fast parameter estimation methods to model mixed data

types. This is motivated by many real world applications. For example in genetics

researchers are particularly interested in analyzing the association between genotypes

and heterogeneous traits of varying data types. We develop a new mixed membership

model named generalized latent Dirichlet model for this task. The model assumes

each variable of a observed multivariate vector follows a mixture of k components

with distribution particularly specified for that variable. The mixture weights are

shared by all variables in the observed multivariate vector. The new model reduces

to several well known models as special cases when the distributions of variables are

specified. For this new model we develop a generalized method of moment (GMM)

approach for parameter estimation. Our GMM approach does not require the instan-

tiation of latent variables, therefore it avoids the needs to alternatively update latent

variables and population parameters, which could not be avoided using other estima-

tion methods such as EM and MCMC. In addition our GMM approach only requires
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the correct specification of first moments of component distributions. Our approach

is orders of magnitude faster than alternative methods, and at the same time it

achieves higher estimation accuracy in the existence of outliers. We demonstrate

our new approach in several real world applications including promoter sequence

analysis, political-economic risk analysis and eQTL study.

The last problem this dissertation tries to solve is how to draw samples from

distributions defined on di↵erent manifolds. Many high dimensional statistical ap-

plications require drawing samples from a manifold. Such applications include prob-

abilistic singular value decomposition and orthogonal factor analysis. In addition,

drawing samples from a sphere is required when we embed the GMM approach devel-

oped in Chapter 3 in a Bayesian framework. To this end we develop a Monte Carlo

method that combines Hamiltonian Monte Carlo (HMC) algorithm with a geodesic

integrator. The HMC component allows distant moves in the parameter space to be

accepted and the geodesic integrator component restricts the moves to the parameter

manifold. We apply the method in two cases: a matrix joint orthogonal diagonal-

ization problem and the posterior computation of the Bayesian GMM method for

Chapter 3.

5.2 Future directions

There are many potential extensions of previous chapters. Some of the extensions

are described below.

5.2.1 Chapter 2

The group factor model BASS can be viewed as achieving structured variable selec-

tion at both variable level and view level. This concept is related to the structured

variable selection which has been investigated recently either using penalization with

structured norms (Jenatton et al., 2011) or developing Bayesian approaches using
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graphical priors (Li and Zhang, 2010). This new research direction is motivated by

the fact that high dimensional observations are often represented in a structured

way. For example in a genome-wide association study, nearby genetic variants are

often highly correlated due to linkage disequilibrium. In a functional MRI study,

observed images are spatially correlated due to the structures of the brain. In a

gene expression analysis, products of genes can be annotated to form a structured

ontology that is represented by a directed graph. Given these highly structured data,

it is interesting to ask whether variable selection could leverage those information to

generate better results. An interesting extension of BASS could be to organize the p

variables into a tree and to perform variable selections at di↵erent levels/branches of

the tree. For example, when we analyze gene expression data, genes could be orga-

nized into a tree structure according to the functional annotations of their products.

We could develop new e�cient structured variable selection methods that could scale

to massive data sets current available.

5.2.2 Chapter 3

The original coordinate descent algorithm developed in MELD scales with Opp2q.

This complexity hinders its application when p is large. A direct extension of the al-

gorithm is to use stochastic gradient methods by calculating an approximate gradient

in each step when we perform parameter updates.

Another extension of Chapter 3 is that the GMM approach developed in MELD

could be extended to allow variables taking network type data. Community or mod-

ular structure detection in network data has become increasingly important in recent

years. Such network modules correspond to functional units in a network (Newman,

2012). For example in a protein-protein interaction network, highly connected pro-

teins in a module indicate they might have similar functions. Most recently the mixed

membership stochastic block (MMSB) model is proposed (Airoldi et al., 2008). This
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new model extends previous stochastic block model which assumes each node in a

network to belong to a single latent module. Instead, MMSB allows each node to

partially belong to di↵erent modules, reflecting the fact that in real world applica-

tions a node often has multiple roles. For example a protein might exert distinct

functions by forming di↵erent protein complexes with di↵erent partners. Based on

MMSB model, a fast parameter estimation method using moment tensor decompo-

sition has been proposed for MMSB model (Anandkumar et al., 2014a). It might be

possible to extend our GMM framework to include network data types by adapting

the network moment tensor approach developed by Anandkumar et al. (2014a). An

direct implication of this extension is that it allows us to combine network data with

additional node information to better detect modular structure among nodes. Such

node information could be a feature vector for every node. For example, the expres-

sion values of proteins could be measured under di↵erent conditions in addition to

their interaction network.

5.2.3 Chapter 4

First, the Bayesian GMM framework could be extended by assigning nonparametric

priors to the component mean parameters. Assigning a nonparametric prior such as

the Dirichlet process prior to the component mean parameters could allow the compo-

nent number to be estimated from data. Second, the joint orthogonal diagonalization

problem could be extended to the multi-view problem where each view represents

measurements of a same set of variables under di↵erent conditions, which is related

to the pooled covariance estimation problem studied by Ho↵ (2009a). Moreover the

joint orthogonal diagonalization problem could be used to perform third order mo-

ment tensor decomposition: by projecting the third order moment tensor to matrices

using di↵erent random projection vectors, the decomposition problem can be written

as a joint orthogonal diagonalization problem (Anandkumar et al., 2012b).
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Appendix A

Appendix for a scalable Bayesian group factor

analysis model

A.1 Markov chain Monte Carlo (MCMC) algorithm for posterior in-
ference of BASS

We derive an MCMC algorithm with Gibbs sampling steps for our Bayesian group

factor analysis model in Chapter 2. Write the joint distribution of the full model as

ppY ,X,⇤,⇥,�,�,T ,⌘,�,Z,⌃,⇡q

“ ppY |⇤,X,⌃qppXq

ˆ pp⇤|⇥qpp⇥|�,Z,�qpp�|�qpp�|T qppT |⌘qpp⌘|�q

ˆ pp⌃qppZ|⇡qpp⇡q,

where ⇥ “ t✓pvq
jh

u, � “ t�pvq
jh

u, � “ t�pvq
h

u, T “ t⌧ pvq
h

u, ⌘ “ t⌘pvq
u and � “ t�pvq

u are

the collections of the prior parameters in equation (2.14)

Update latent factors

x

i

|´ „ N
k

ˆ

p⇤T⌃´1⇤` Iq

´1⇤T⌃´1
y

i

, p⇤T⌃´1⇤` Iq

´1

˙

,
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Update the jth row of the loading

�

T

j¨|´ „ N
k

ˆ

p�´2
j

XX

T

` D

´1
j

q

´1�´2
j

Xy

T

j¨, p�´2
j

XX

T

` D

´1
j

q

´1

˙

,

where

D

´1
j

“ diag

ˆ

p✓
pvjq
j1 q

Ipzpvjq
1 “1q

p�
pvjq
1 q

Ipzpvjq
1 “0q, ¨ ¨ ¨ , p✓

pvjq
jk

q

Ipzpvjq
k “1q

p�
pvjq
k

q

Ipzpvjq
k “0q

˙

,

and v
j

represents the view jth row belongs to.

Update ✓pvq
jh

, �pvq
jh

and �pvq
h

with zpvq
h

“ 1

✓pvq
jh

|´ „ GIGp0, 2�pvq
jh

, p�pvq
jh

q

2
q,

�pvq
jh

|´ „ Gap1,�pvq
h

` ✓pvq
jh

q,

�pvq
h

|´ „ Gap1{2p
v

` 1{2,
pv
ÿ

j“1

�pvq
jh

` ⌧ pvq
h

q,

where GIG is the generalized inverse Gaussian distribution.

Update �pvq
h

with zpvq
h

“ 0

�pvq
h

|´ „ GIGp1{2 ´ p
w

{2, 2⌧ pvq
h

,
pv
ÿ

j“1

p�pvq
jh

q

2
q.

Update the rest parameters in the loading prior

⌧ pvq
h

|´ „ Gap1,�pvq
h

` ⌘pvq
q,

⌘pvq
|´ „ Gap1{2k ` 1{2, �pvq

`

k

ÿ

h“1

⌧ pvq
h

q,

�pvq
|´ „ Gap1, ⌘pvq

` 1q,

⇡pvq
|´ „ Bep1 `

k

ÿ

h“1

zpvq
h

, 1 ` k ´

k

ÿ

h“1

zpvq
h

q.

The full conditional of zpvq
h

is

Prpzpvq
h

“ 1|´q9⇡pvq
pv

π

j“1

Np�pvq
jh

; 0, ✓pvq
jh

qGap✓pvq
jh

; a, �pvq
jh

qGap�pvq
jh

; b,�pvq
h

q,
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Prpzpvq
h

“ 0|´q9p1 ´ ⇡pvq
q

pv
π

j“1

Np�pvq
jh

; 0,�pvq
h

q.

We further integrate out �pvq
jh

in Prpzpvq
h

“ 1|´q

Prpzpvq
h

“ 1|´q9⇡pvq
pv

π

j“1

ª

Np�pvq
jh

; 0, ✓pvq
jh

qGap✓pvq
jh

; a, �pvq
jh

qGap�pvq
jh

; b,�pvq
h

qd�pvq
jh

“ ⇡pvq
pv

π

j“1

Np�pvq
jh

; 0, ✓pvq
jh

q

�p1q

�p1{2q�p1{2q

p✓pvq
jh

q

´1{2
p✓pvq

h

q

1{2

p✓pvq
jh

` �pvq
h

q

.

Update �´2
j

�´2
j

|´ „ Ga

ˆ

n{2 ` a
�

, 1{2py

j¨ ´ �

j¨Xqpy

j¨ ´ �

j¨Xq

T

` b
�

˙

.

A.2 EM updates of loading prior parameters in BASS

We list the parameter updates for loading prior parameters in developed in Chapter

2 equation (2.14) below

✓̂pvq
jh

“

2a ´ 3 `

b

p2a ´ 3q

2
` 8p�pvq

jh

q

2�pvq
jh

4�pvq
jh

,

�̂pvq
jh

“

a ` b

✓pvq
jh

` �pvq
h

,

�̂pvq
h

“

p1
´ 1 `

a

pp1
´ 1q

2
` a1b1

a1 ,with

p1
“ ⇢pvq

h

p
v

b ´ p1 ´ ⇢pvq
h

qp
v

{2 ` c,

a1
“ 2p⇢pvq

h

pv
ÿ

j“1

�pvq
jh

` ⌧ pvq
h

q, b1
“ p1 ´ ⇢pvq

h

q

pv
ÿ

j“1

p�pvq
jh

q

2

⌧̂ pvq
h

“

c ` d

�pvq
h

` ⌘pvq
,

⌘̂pvq
“

dk ` e

�pvq
`

∞

k

h“1 ⌧
pvq
h

,
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�̂pvq
“

e ` f

⌘pvq
` ⌫

,

⇡̂pvq
“

∞

k

h“1 ⇢
pvq
h

k
,

�̂´2
j

“

n{2 ` a
�

´ 1

1{2py

j¨ ´ �

j¨xXyqpy

j¨ ´ �

j¨xXyq

T

` b
�

.

A.3 Parameter expanded EM (PX-EM) algorithm for MAP estimate

We introduce a positive semidefinite matrix A in our original BASS model defined

in Chapter 2 to obtain a parameter expanded version

y

i

“ ⇤A´1
L

x

i

` ✏

i

,

x

i

„ N
k

p0,Aq,

✏

i

„ N
k

p0,⌃q.

Here A

L

is the lower triangular part of Cholesky decomposition of A. Marginally

the covariance matrix is still ⌦ “ ⇤⇤T

` ⌃ and this additional parameter keeps

the likelihood invariant. This new additional parameter reduces the coupling e↵ects

between the updates of loading matrix and latent factors (Liu et al., 1998; van Dyk

and Meng, 2001) and serves to connect di↵erent posterior modes with equal likelihood

curves indexed by A (Ročková and George, 2015).

Let ⇤‹
“ ⇤A´1

L

and ⌅‹
“ t⇤‹,⇥,�,�,T ,⌘,�,⇡,⌃u. Then the parameters of

our expanded model are t⌅‹
YAu. We assign our structured prior on ⇤‹. Therefore

the updates of ⌅‹ are unchanged given the estimates of first and second moments

of X. The estimates of xXy and xXX

T

y can still be caculated using corresponding

equations in Appendix A.2 after mapping back te loading matrix to the original

model by ⇤ “ ⇤‹
A

L

. The rest is to find the estimate of A.

Write the Q function in the expanded model as

Qp⌅‹,A|⌅psqq “ E
X,Z|⌅psq,Y ,Apsq log

`

pp⌅‹,A,X,Z|Y q

˘

.
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With Apsq initialized to I

k

, the only term involving A is ppXq. Therefore the A that

maximizes the function can be solved as

Aps`1q “ argmax
A

Qp⌅‹,A|⌅psqq “ argmax
A

ˆ

const ´

n

2
log |A| ´

1

2
tr

`

A

´1
S

XX

˘

˙

.

The solution is simply Aps`1q “

1
n

S

XX .

The EM algorithm in this expanded parameter space generates a sequence t⌅‹p1qY

Ap1q,⌅‹p2q Y Ap2q, ¨ ¨ ¨ u. This sequence corresponds to a sequence of parameter es-

timations in original space t⌅p1q,⌅p2q, ¨ ¨ ¨ u with ⇤ in the original space equals to

⇤‹
A

L

(Ročková and George, 2015).
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Appendix B

Appendix for fast moment estimation for

generalized latent Dirichlet models

B.1 Proof of Theorem 3.1

Proof. We start with the case where y
ij

is a categorical data with d
j

di↵erent levels.

The latent probability vector x

i

“ px
i1, ¨ ¨ ¨ , x

ik

q

T

P �k´1 defines the mixture pro-

portion of individual i. We assume x

i

„ Dirp↵1, ¨ ¨ ¨ ,↵
k

q. Define ↵0 “

∞

h

↵
h

and

↵ “ p↵1, ¨ ¨ ¨ ,↵
k

q

T .

We use the standard basis for encoding. We encode y
ij

“ c
j

as b
ij

P Rdj a binary

(0{1) vector with the c
j

th coordinate being 1 and all others being 0. Similarly, we

encode the membership variable m
ij

as a k dimensional binary vector m

ij

P Rk.

Consider the first moment of b
ij

.

µ

j

“ Epb

ij

q “ ErEpb

ij

|m

ij

qs “ Ep�
j

m

ij

q “ ErEp�
j

m

ij

|x

i

qs “ Ep�
j

x

i

q “ �
j

↵

↵0
,

where �
j

“ p�

j1, ¨ ¨ ¨�

jk

q.

We consider second order moment conditions. There are four types of second

moments: same variable same subject (type SS), same variable cross subject (type

SC), cross variable same subject (type CS), and cross variable cross subject (type
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CC). Of the four types, only the CS type is needed to prove the theorem. The CS

type second moment for b
ij

and b

it

(j ‰ t) can be written as

Epb

ij

˝ b

it

q “ �
j

Epm

ij

˝ m

it

q�T

t

“ �
j

Epx

i

˝ x

i

q�T

t

.

For a Dirichlet distributed variable,

Epx

i

˝ x

i

q “ covpx

i

q ` Epx

i

q ˝ Epx

i

q

“

1

↵0p↵0 ` 1q

diagp↵q `

↵0

↵2
0p↵0 ` 1q

↵ ˝ ↵.

Then we have

Epb

ij

˝ b

it

q “ �
j

Epx

i

˝ x

i

q�T

t

“

1

↵0p↵0 ` 1q

k

ÿ

h“1

↵
h

�

jh

˝ �

th

`

↵0

↵0 ` 1
µ

j

˝ µ

t

. (B.1)

We next consider third order moment conditions. There are eight di↵erent types of

third order moments for b
ij

. Only the moments with di↵erent variables for the same

subject are needed to prove the theorem.

We consider the third cross moment for b

ij

, b
it

and b

is

with j ‰ t ‰ s for the

same subject. First we calculate Epm

ij

˝ m

is

˝ m

it

q.

Epm

ij

˝ m

is

˝ m

it

q “ ErEpm

ij

˝ m

is

˝ m

it

|x

i

qs

“ Epx

i

˝ x

i

˝ x

i

q

“

1

↵0p↵0 ` 1qp↵0 ` 2q

ˆ

p↵ ˝ ↵ ˝ ↵q `

k

ÿ

h“1

↵
h

pe

h

˝ e

h

˝ ↵q

`

k

ÿ

h“1

↵
h

pe

h

˝ ↵ ˝ e

h

q `

k

ÿ

h“1

↵
h

p↵ ˝ e

h

˝ e

h

q

` 2
k

ÿ

h“1

↵
h

pe

h

˝ e

h

˝ e

h

q

˙

.
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Here e

h

is standard basis vector of length k with hth coordinate being one. The

third order moment tensor of b
ij

˝ b

is

˝ b

it

can be derived as

Epb

ij

˝ b

is

˝ b

it

q “ Epm

ij

˝ m

is

˝ m

it

q ˆ t�
j

,�
s

,�
t

u

“

1

↵0p↵0 ` 1qp↵0 ` 2q

ˆ

p�
j

↵q ˝ p�
s

↵q ˝ p�
t

↵q `

k

ÿ

h“1

↵
h

r�

jh

˝ �

sh

˝ p�
t

↵qs

`

k

ÿ

h“1

↵
h

r�

jh

˝ p�
s

↵q ˝ �

th

s `

k

ÿ

h“1

↵
h

rp�
j

↵q ˝ �

sh

˝ �

th

s

` 2
k

ÿ

h“1

↵
h

�

jh

˝ �

sh

˝ �

th

˙

“

1

↵0p↵0 ` 1qp↵0 ` 2q

ˆ

↵3
0µj

˝ µ

s

˝ µ

t

` ↵2
0p↵0 ` 1qEpb

ij

˝ b

is

˝ µ

t

q ´ ↵3
0µj

˝ µ

s

˝ µ

t

` ↵2
0p↵0 ` 1qEpµ

j

˝ b

is

˝ b

it

q ´ ↵3
0µj

˝ µ

s

˝ µ

t

` ↵2
0p↵0 ` 1qEpb

ij

˝ µ

s

˝ b

it

q ´ ↵3
0µj

˝ µ

s

˝ µ

t

` 2
k

ÿ

h“1

↵
h

�

jh

˝ �

sh

˝ �

th

˙

. (B.2)

The theorem follows Equations (B.1) and (B.2) with µ

j

“ Epb

ij

q plugged in. For

non-categorical data, we let b

ij

” y
ij

and �

jh

is a scalar mean parameter for y
ij

.

Equations B.1 and B.2 still hold.

B.2 Proof of Theorem 3.2

Proof. For notation simplicity we suppressAp¨q
n

inQp¨q
n

p�;Ap¨q
n

q andA

p¨q inQp¨q
0 p�;Ap¨q

q.

Lemma 3.1 implies lim
nÑ8 Prr|Qp¨q

n

p

p�p¨q
q´Qp¨q

0 p

p�p¨q
q| † ✏{3s “ 1 and lim

nÑ8 Prr|Qp¨q
n

p�0q´

Qp¨q
0 p�0q| † ✏{3s “ 1 for ✏ ° 0. This result also implies

lim
nÑ8

PrrQp¨q
0 p

p�p¨q
q † Qp¨q

n

p

p�p¨q
q ` ✏{3s “ 1. (B.3)
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lim
nÑ8

PrrQp¨q
n

p�0q † Qp¨q
0 p�0q ` ✏{3s “ 1. (B.4)

On the other hand, p�p¨q minimizes Qp¨q
n

p�q, therefore

lim
nÑ8

PrrQp¨q
n

p

p�p¨q
q † Qp¨q

n

p�0q ` ✏{3s “ 1. (B.5)

Equations B.3 and B.5 imply

lim
nÑ8

PrrQp¨q
0 p

p�p¨q
q † Qp¨q

n

p�0q ` 2✏{3s “ 1.

Together with Equation (B.4), we get

lim
nÑ8

PrrQp¨q
0 p

p�p¨q
q † Qp¨q

0 p�0q ` ✏s “ 1.

Therefore

lim
nÑ8

Prr0 § Qp¨q
0 p

p�p¨q
q † ✏s “ 1 (B.6)

follows with Qp¨q
0 p�0q “ 0 and Qp¨q

0 p

p�p¨q
q • 0. Next, we choose a neighborhood N ,

which contains �0 in ⇥. Due to the compactness of ⇥ the neighborhood NC is also

compact. The continuousness of Qp¨q
0 p�q implies the existence of inf�PNC Qp¨q

0 p�q and

it is positive. Let ✏ “ inf�PNC Qp¨q
0 p�q, then we get

lim
nÑ8

Prr0 § Qp¨q
0 p

p�p¨q
q † inf

�PNC
Qp¨q

0 p�qs “ 1. (B.7)

Therefore lim
nÑ8 Prp p�p¨q

R NC

q “ 1, which suggests lim
nÑ8 Prp p�p¨q

P Nq “ 1.

Shrinking the neighborhood size of N we get

lim
nÑ8

Prp p�p¨q
“ �0q “ 1.

B.3 Proof of Theorem 3.3

Proof. We approximate f

p¨q
n

p

p�p¨q
q using first order Taylor expansion

f

p¨q
n

p

p�p¨q
q “ f

p¨q
n

p�0q ` G

p¨q
n

p�0qrvecp p�p¨q
q ´ vecp�0qs ` Otrvecp p�p¨q

q ´ vecp�0qs

2
u
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Ignoring the high order term, we left multiply both sides by rG

p¨q
n

p

p�p¨q
qs

T

A

p¨q
n

. Then

we get

rG

p¨q
n

p

p�p¨q
qs

T

A

p¨q
n

f

p¨q
n

p

p�p¨q
q « rG

p¨q
n

p

p�p¨q
qs

T

A

p¨q
n

f

p¨q
n

p�0q

` rG

p¨q
n

p

p�p¨q
qs

T

A

p¨q
n

G

p¨q
n

p�0qrvecp p�p¨q
q ´ vecp�0qs.

The fact that estimator p�p¨q minimizes Qp¨q
n

p�,Ap¨q
n

q implies the left hand side equals

to zero. Therefore we get

n1{2
rvecp p�p¨q

q ´ vecp�0qs « ´trG

p¨q
n

p

p�p¨q
qs

T

A

p¨q
n

G

p¨q
n

p�0qu

´1
rG

p¨q
n

p

p�p¨q
qs

T

A

p¨q
n

n1{2
f

p¨q
n

p�0q.

The theorem follows with n1{2
f

p¨q
n

p�0q
p

Ñ Np0,Sp¨q
q and Assumptions 3.1 and 3.2.

B.4 Derivatives of moment functions

Second moment matrix

The second moment matrix F

p2q
jt

py

i

,�q in the main paper may be written as b

ij

˝

b

it

´�
j

Epx

i

˝ x

i

q�T

t

. The derivatives of F p2q
jt

py

i

,�q with respect to �
j

and �
t

can

be written as

BvecrF p2q
jt

py

i

,�qs

Bvecp�
j

q

“ ´

Btr�
t

Epx

i

˝ x

i

qs b I

djuvecp�j

q

Bvecp�
j

q

“ ´r�
t

Epx

i

˝ x

i

qs b I

dj ,

BvecrF p2q
jt

py

i

,�qs

Bvecp�
t

q

“ ´T

Bvecr�
t

Epx

i

˝ x

i

q�T

j

s

Bvecp�
t

q

“ ´T

Btr�
j

Epx

i

˝ x

i

qs b I

dtvecp�t

qu

Bvecp�
t

q

“ ´T tr�
j

Epx

i

˝ x

i

qs b I

dtu,

where b indicates a Kronecker product and T is a d
t

kˆd
t

k 0/1 matrix that satisfies

vecr�
j

Epx

i

˝ x

i

q�T

t

s “ T vecr�
t

Epx

i

˝ x

i

q�T

j

s.

Therefore ErBf

p2q
py

i

,�q{B�s is a block matrix with block of ´�T

t

Epx

i

˝ x

i

q b I

dj

on columns corresponding to vecp�
t

q and rows corresponding to vecrF p2q
jt

py

i

,�qs.
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Third moment tensor

We next consider the third moment tensor. Write F p3q
jst

py

i

,�q as b
ij

˝b

ij

˝b

ij

´Epx

i

˝

x

i

˝ x

i

q ˆ1 �j

ˆ2 �s

ˆ3 �t

. Then only the second term involves �.

The derivatives of F p3q
jst

py

i

,�q with respect to �
j

can be written as

BvecrF p3q
jst

py

i

,�qs

Bvecp�
j

q

“ ´

BvectrEpx

i

˝ x

i

˝ x

i

q ˆ1 �j

ˆ2 �s

ˆ3 �t

sp1qu

Bvecp�
j

q

“ ´

Bvectr�
j

Epx

i

˝ x

i

˝ x

i

qp1qp�t

b�
s

q

T

u

Bvecp�
j

q

“ ´p�
t

b�
s

qvecrEpx

i

˝ x

i

˝ x

i

qp1qs
T

b I

dj ,

where subscript p1q indicates model-1 unfolding of a three way tensor.

The derivatives of F p3q
jst

py

i

,�q with respect to �
s

and �
t

can be calculated ac-

cordingly by introducing 0/1 transformation matrices Tp2qp1q and Tp3qp1q both with

size d
j

d
s

d
t

ˆ d
j

d
s

d
t

that satisfy

vectrF

p3q
jst

py

i

,�qsp1qu “ Tp2qp1qvectrF

p3q
jst

py

i

,�qsp2qu

“ Tp3qp1qvectrF

p3q
jst

py

i

,�qsp3qu.

Then

BvecrF p3q
jst

py

i

,�qs

Bvecp�
s

q

“ ´Tp2qp1q
BvectrEpx

i

˝ x

i

˝ x

i

q ˆ1 �j

ˆ2 �s

ˆ3 �t

sp2qu

Bvecp�
s

q

“ ´Tp2qp1q
Bvectr�

s

Epx

i

˝ x

i

˝ x

i

qp2qp�t

b�
j

q

T

u

Bvecp�
s

q

“ ´Tp2qp1qtp�
t

b�
j

qrEpx

i

˝ x

i

˝ x

i

qp2qs
T

b I

dsu,

BvecrF p3q
jst

py

i

,�qs

Bvecp�
t

q

“ ´Tp3qp1q
BvectrEpx

i

˝ x

i

˝ x

i

q ˆ1 �j

ˆ2 �s

ˆ3 �t

sp3qu

Bvecp�
t

q

“ ´Tp3qp1q
Bvectr�

t

Epx

i

˝ x

i

˝ x

i

qp3qp�s

b�
j

q

T

u

Bvecp�
t

q

“ ´Tp3qp1qtp�
s

b�
j

qrEpx

i

˝ x

i

˝ x

i

qp3qs
T

b I

dtu.
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The conditions 1), 3) and 4) in Assumption 2 in main text follow after we calcu-

lating the derivatives of moment functions.

B.5 Derivation of Newton-Raphson update

We denote

E

p2q
n,jt

“ F

p2q
n,jt

p�q `�
j

⇤p2q�T

t

,

E

p3q
n,jst

“ F

p3q
n,jst

p�q `⇤p3q
ˆ1 �j

ˆ2 �s

ˆ3 �t

.

Then the two objective functions can be written as

Qp2q
p�, Iq “

p´1
ÿ

j“1

p

ÿ

t“j`1

||E

p2q
n,jt

´�
j

⇤p2q�T

t

||

2
F

,

Qp3q
p�, Iq “

p´1
ÿ

j“1

p

ÿ

t“j`1

||E

p2q
n,jt

´�
j

⇤p2q�T

t

||

2
F

`

p´2
ÿ

j“1

p´1
ÿ

s“j`1

p

ÿ

t“s`1

||E

p3q
n,jst

´⇤p3q
ˆ1 �j

ˆ2 �s

ˆ3 �t

||

2
F

.

We first consider Qp2q
p�, Iq. The terms involve �

jh

are

p

ÿ

t“1,t‰j

„

´ 2�p2q
h

pE

p2q
n,jt

�

th

q

T

�

jh

` p�p2q
h

q

2
p�

T

th

�

th

q�

T

jh

�

jh

⇢

,

where E

p2q
n,jt

“ E

p2q
n,jt

´

∞

h

1‰h

�p2q
h

1 �
jh

1
˝ �

th

1 and �p2q
h

is the hth diagonal element of

⇤p2q. Here we use the fact that ||E

p2q
n,jt

´ �
j

⇤p2q�T

t

||

2
F

“ ||E

p2q
n,tj

´ �
t

⇤p2q�T

j

||

2
F

. By

letting

⇠

p2q
“ ´2�p2q

h

p

ÿ

t“1,t‰j

pE

p2q
jt

�

th

q,

�p2q
“ p�p2q

h

q

2
p

ÿ

t“1,t‰j

�

T

th

�

th

,
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the gradient rQp2q
p�

jh

q and Hessian r2Qp2q
p�

jh

q can be written as

rQp2q
p�

jh

, Iq “ ⇠

p2q
` 2�p2q

�

jh

,

r2Qp2q
p�

jh

, Iq “ 2�p2q
I.

The update rule in (3.18) can be derived accordingly.

Then we consider Qp3q
p�, Iq. The terms involve �

jh

are
p

ÿ

t“1,t‰j

„

´ 2�p2q
h

pE

p2q
n,jt

�

th

q

T

�

jh

` p�p2q
h

q

2
p�

T

th

�

th

q�

T

jh

�

jh

⇢

`

p

ÿ

s“1,s‰j

p

ÿ

t“1,t‰s,t‰j

„

´ 2xE

p3q
n,jst

,�p3q
h

�

jh

˝ �

sh

˝ �

th

y ` ||�p3q
h

�

jh

˝ �

sh

˝ �

th

||

2
F

⇢

,

where E

p2q
n,jt

“ E

p2q
n,jt

´

∞

h

1‰h

�p2q
h

1 �
jh

1
˝ �

th

1 and E

p3q
n,jst

“ E

p3q
n,jst

´

∞

h

1‰h

�p3q
h

1 �
jh

1
˝

�

sh

1
˝ �

th

1 . Again we use the symmetric property of ||E

p2q
n,jt

´ �
j

⇤p2q�T

t

||

2
F

and the

super-symmetric property of ||E

p3q
n,jst

´⇤p3q
ˆ1�j

ˆ2�s

ˆ3�t

||

2
F

. By organizing the

terms, we get
p

ÿ

t“1,t‰j

„

´ 2�p2q
h

pE

p2q
n,jt

�

th

q

T

�

jh

` p�p2q
h

q

2
p�

T

th

�

th

q�

T

jh

�

jh

⇢

`

p

ÿ

s“1,s‰j

p

ÿ

t“1,t‰s,t‰j

„

´ 2�p3q
h

pE

p3q
n,jst

ˆ2 �sh

ˆ3 �th

q

T

�

jh

` p�p3q
h

q

2
p�

T

sh

�

sh

qp�

T

th

�

th

qp�

T

jh

�

jh

q

⇢

.

We let

⇠

p3q
“ ´2�p2q

h

p

ÿ

t“1,t‰j

pE

p2q
n,jt

�

th

q ´ 2�p3q
h

p

ÿ

s“1,s‰j

„

p

ÿ

t“1,t‰s,t‰j

pE

p3q
n,jst

ˆ2 �sh

ˆ3 �th

q

⇢

,

�p3q
“ p�p2q

h

q

2
p

ÿ

t“1,t‰j

�

T

th

�

th

` p�p3q
h

q

2
p

ÿ

s“1,s‰j

„

p

ÿ

t“1,t‰s,t‰j

p�

T

sh

�

sh

qp�

T

th

�

th

q

⇢

,

and then the gradient rQp3q
p�

jh

, Iq and Hessian r2Qp3q
p�

jh

, Iq can be written as

rQp3q
p�

jh

, Iq “ ⇠

p3q
` 2�p3q

�

jh

,

r2Qp3q
p�

jh

, Iq “ 2�p3q
I.

The update rule in (3.19) follows directly.
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B.6 Optimal weight matrices

B.6.1 Derivation of weight matrix for moment vector using second moment matrices

We encode the observations y
ij

as b
ij

with F

p2q
jt

py

i

,�q defined as

F

p2q
jt

py

i

,�q “ b

ij

˝ b

it

´

↵0

↵0 ` 1
Epb

ij

q ˝ Epb

it

q ´�
j

⇤p2q�T

t

“ b

ij

˝ b

it

´

↵0

↵0 ` 1
µ

j

˝ µ

t

´�
j

⇤p2q�T

t

.

In addition, ErF

p2q
jt

py

i

,�qs “ 0.

Estimation of the parameters � requires the calculation of p

µ

j

and p

µ

t

and then

plugging these values into the equation for F

p2q
jt

py

i

,�q. The expectations of the

moment functions are then calculated by sample averages, denoted as F p2q
n,jt

p�q. The

first stage of estimation involves the minimization of a quadratic function defined as

the Frobenius norm of F p2q
n,jt

p�q

Qp2q
n

p�, Iq “

p´1
ÿ

j“1

p

ÿ

t“j`1

}F

p2q
n,jt

p�q}

F

,

where we use p

µ

j

and p

µ

t

in the above computation rather than considering µ

j

and

µ

t

as unknown parameters. Minimizing the above functional provides an estimate

p�.

Given the estimate p� we re-compute p

µ

j

and p

µ

t

based on the first moment equa-

tions. We define following moment vector and its estimated expectation

f

p2q
py

i

,�q “

ˆ

vecrF p2q
12 py

i

,�qs

T , . . . , vecrF p2q
p´1,ppy

i

,�qs

T

˙

T

,

f

p2q
n

p�q “

1

n

n

ÿ

i“1

f

p2q
py

i

,�q.

We then compute a variance-covariance matrix of n1{2
f

p2q
n

p�q to compute an

optimal weight matrix. The covariance matrix is composed by the matrix blocks of
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the variance-covariance of n1{2vecrF p2q
n,jt

p�qs and n1{2vecrF p2q
n,su

p�qs for every possible

j † t and s † u combinations in n1{2
f

p2q
n

p�q. We denote such a block as
jt

⌃
su

.

Equation (B.8) illustrates the covariance matrix. In the following, we are going

to compute the covariance matrix by dividing the matrix into four parts: diagonal

elements, o↵ diagonal elements in
jt

⌃
jt

, elements in
jt

⌃
su

with one matching variable

(three possible cases j “ s or t “ s or t “ u) and elements in
jt

⌃
su

with pj, tq ‰ ps, uq.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

index vecrF p2q
n,12p�qs vecrF p2q

n,13p�qs ... vecrF p2q
n,1pp�qs vecrF p2q

n,23p�qs ... vecrF p2q
n,pp´1,pqp�qs

vecrF p2q
n,12p�qs 12⌃12 12⌃13 . . . 12⌃1p 12⌃23 . . . 12⌃p´1,p

...
...

...
. . .

...
...

. . .
...

vecrF p2q
n,1pp�qs 1p⌃12 1p⌃13 . . . 1p⌃1p 1p⌃23 . . . 1p⌃p´1,p

vecrF p2q
n,23p�qs 23⌃12 23⌃13 . . . 23⌃1p 23⌃23 . . . 23⌃p´1,p

...
...

...
. . .

...
...

. . .
...

vecrF p2q
n,pp´1,pqp�qs p´1,p⌃12 p´1,p⌃13 . . . p´1,p⌃1p p´1,p⌃23 . . . p´1,p⌃p´1,p

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(B.8)

Part one, diagonal elements. The variance of the pc
j

, c
t

q element of n1{2
F

p2q
n,jt

p�q for

c
j

“ 1, . . . , d
j

, c
t

“ 1, . . . , d
t

, j “ 1, . . . , p ´ 1 and t “ j ` 1, . . . , p composes the

diagonal elements of the covariance matrix. Its value can be calculated as

Var

ˆ

n1{2
F

n,jt

p�q

cj ,ct

˙

“ Var

ˆ

pb

ij

˝ b

it

q

cj ,ct

˙

“ E
ˆ

rpb

ij

˝ b

it

q

cj ,cts
2

˙

´ E2

ˆ

pb

ij

˝ b

it

q

cj ,ct

˙

.

We have already derived the second term. The first term is computed as follows:

E
ˆ

rpb

ij

˝ b

it

q

cj ,cts
2

˙

“ E
ˆ

p�

T

j¨cjmij

q

2
p�

T

t¨ctmit

q

2

˙

“ E
ˆ

�

T

j¨cjpmij

˝ m

ij

q�

j¨cj�
T

t¨ctpmit

˝ m

it

q�

t¨ct

˙

“ E
ˆ

�

T

j¨cj rdiagpx

i

qs�

j¨cj�
T

t¨ctrdiagpx

i

qs�

t¨ct

˙

“ E
ˆ

ÿ

h1

ÿ

h2

�2
jh1cj

�2
th2ct

x
ih1xih2

˙

“

ÿ

h1

ÿ

h2

�2
jh1cj

�2
th2ct

Epx
ih1xih2q. (B.9)
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To calculate Epx
ih1xih2q we use the fact that for a Dirichlet distributed x

i

E
ˆ

π

h

xrh
ih

˙

“

�pa0q

�pa0 ` r0q
ˆ

π

h

�pa
h

` r
h

q

�pa
h

q

, (B.10)

where �p¨q is a gamma function and r0 “

∞

h

r
h

.

Part two, o↵ diagonal elements in

jt

⌃
jt

. We next consider the covariance between

n1{2
F

p2q
n,jt

p�q

cj ,ct and n1{2
F

p2q
n,jt

p�q

gj ,gt for cj “ 1, . . . , d
j

and c
t

“ 1, . . . , d
t

with pc
j

, c
t

q ‰

pg
j

, g
t

q. Elements of this kind constitute the o↵ diagonal elements in the block of

jt

⌃
jt

.

The computation requires the calculation of Erpb

ij

˝ b

it

q

cj ,ctpbij ˝ b

it

q

gj ,gts

E
ˆ

pb

ij

˝ b

it

q

cj ,ctpbij ˝ b

it

q

gj ,gt

˙

“ E
ˆ

�

T

j¨cjpmij

˝ m

ij

q�

j¨gj�
T

t¨ctpmit

˝ m

it

q�

t¨gt

˙

“ E
ˆ

�

T

j¨cj rdiagpx

i

qs�

j¨gj�
T

t¨ctrdiagpx

i

qs�

t¨gt

˙

“ E
ˆ

ÿ

h1

ÿ

h2

�
jh1cj�jh1gj�th2ct�th2gtxih1xih2

˙

“

ÿ

h1

ÿ

h2

�
jh1cj�jh1gj�th2ct�th2gtEpx

ih1xih2q. (B.11)

Part three, elements in

jt

⌃
su

with one matching variable. We next calculate the ele-

ments in
jt

⌃
su

with one matching variable, the case either j “ s or t “ s or t “ u .

The calculation of Erpb

ij

˝ b

it

q

cj ,ctpbis ˝ b

iu

q

gs,gus is required

E
ˆ

pb

ij

˝ b

it

q

cj ,ctpbis ˝ b

iu

q

gs,gu

˙

“ E
ˆ

p�

T

j¨cjmij

qp�

T

t¨ctmit

qp�

T

s¨gsmis

qp�

T

u¨gumiu

q

˙

.

Without loss of generality, consider the case where j “ s and t ‰ u

E
ˆ

pb

ij

˝ b

it

q

cj ,ctpbis ˝ b

iu

q

gs,gu

˙

“ E
ˆ

�

T

j¨cj rdiagpx

i

qs�

j¨gj�
T

t¨ctrxi

˝ x

i

s�

u¨gu

˙

“ E
ˆ

ÿ

h1

ÿ

h2

ÿ

h3

�
jh1cj�jh1gj�th2ct�uh3guxih1xih2xih3

˙
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“

ÿ

h1

ÿ

h2

ÿ

h3

�
jh1cj�jh1gj�th2ct�uh3guEpx

ih1xih2xih3q. (B.12)

Other elements in the block can be calculated similarly.

Part four, elements in

jt

⌃
su

with pj, tq ‰ ps, uq. We finally consider the covariance

between n1{2
F

p2q
n,jt

p�q

cj ,ct and n1{2
F

p2q
n,su

p�q

gs,gu with c
j

“ 1, . . . , d
j

, c
t

“ 1, . . . , d
t

,

g
s

“ 1, . . . d
s

, g
u

“ 1, . . . , d
u

for pj, tq ‰ ps, uq. The unknown term Erpb

ij

˝b

it

q

cj ,ctpbis˝

b

iu

q

gs,gus can be written as

E
ˆ

pb

ij

˝ b

it

q

cj ,ctpbis ˝ b

iu

q

gs,gu

˙

“ E
ˆ

p�

T

j¨cjmij

qp�

T

t¨ctmit

qp�

T

s¨gsmis

qp�

T

u¨gumiu

q

˙

“

ÿ

h1

ÿ

h2

ÿ

h3

ÿ

h4

�
jh1cj�th2ct�sh3gs�uh4guEpx

ih1xih2xih3xih4q. (B.13)

The optimal weight matrix for f p2q
n

p�q is computed by combining the four parts

in (B.9), (B.11), (B.12) and (B.13) and the first moment conditions derived in the

main text. The size of the weight matrix is of the order Opp2d2q and it is dense with

full rank. Inverting this matrix is computationally intensive so in practice we invert

the diagonal of the matrix to provide a near optimal weight in the second stage of

optimization.

B.6.2 Derivation of weight matrix for moment vector using both second moment
matrices and third moment tensors

In this section we derive the weight matrix for f p3q
n

p�q. Define F

p3q
jst

py

i

,�q as

F

p3q
jst

py

i

,�q “ b

ij

˝ b

is

˝ b

it

´

↵0

↵0 ` 2

ˆ

b

ij

˝ b

is

˝ Epb

it

q ` Epb

ij

q ˝ b

is

˝ b

it

` b

ij

˝ Epb

is

q ˝ b

it

˙

`

2↵2
0

p↵0 ` 1qp↵0 ` 2q

Epb

ij

q ˝ Epb

is

q ˝ Epb

it

q ´⇤p3q
ˆ1 �j

ˆ2 �s

ˆ3 �t

,

with ErF

p3q
jst

py

i

,�qs “ 0.
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The optimal weight matrix for f

p3q
n

p�q can be derived following a similar way

as the weight matrix derivation for f

p2q
n

p�q. However the size of the matrix scales

as Opp3d3q which is prohibitive. For this reason we consider a near optimal weight

matrix by only considering the diagonal elements of the matrix. We now derive the

variance (diagonal) elements of n1{2
F

p3q
n,jst

p�q. In the computations we will use p

µ

j

for

Epb

ij

q. Computing the initial estimator p� involves minimizing Qp3q
n

p�,Ap3q
n

q with

A

p3q
n

“ I.

We define the first two terms in F

p3q
jst

py

i

,�q as r

F

p3q
jst

py

i

,�q

r

F

p3q
jst

py

i

,�q “ b

ij

˝ b

is

˝ b

it

´

↵0

↵0 ` 2

ˆ

b

ij

˝ b

is

˝ µ

t

` µ

j

˝ b

is

˝ b

it

` b

ij

˝ µ

s

˝ b

it

˙

.

The variance of n1{2
F

p3q
n,jst

p�q

cjcsct can be written as

Var

ˆ

n1{2
F

p3q
n,jst

p�q

cjcsct

˙

“ Var

ˆ

r

F

p3q
jst

py

i

,�q

cjcsct

˙

“ E
ˆ

r

r

F

p3q
jst

py

i

,�q

cjcscts
2

˙

´ E2

ˆ

r

F

p3q
jst

py

i

,�q

cjcsct

˙

.

The expectation of r

F

p3q
jst

py

i

,�q

cjcsct has been derived in the main text. We only need

to consider the first term on the right hand side of the equation. After some algebra

we get

E
ˆ

r

r

F

p3q
jst

py

i

,�q

cjcscts
2

˙

“

ÿ

h1

ÿ

h2

ÿ

h3

�2
jh1cj

�2
sh2cs

�2
th3ct

Epx
ih1xih2xih3q

`

2↵0µtct

↵0 ` 2

ÿ

h1

ÿ

h2

ÿ

h3

�2
jh1cj

�2
sh2cs

�
th3ctEpx

ih1xih2xih3q

`

2↵0µscs

↵0 ` 2

ÿ

h1

ÿ

h2

ÿ

h3

�2
jh1cj

�
sh2cs�

2
th3ct

Epx
ih1xih2xih3q

`

2↵0µjcj

↵0 ` 2

ÿ

h1

ÿ

h2

ÿ

h3

�
jh1cj�

2
sh2cs

�2
th3ct

Epx
ih1xih2xih3q

`

↵2
0µjcjµscs

p↵0 ` 2q

2

ÿ

h1

ÿ

h2

ÿ

h3

�
jh1cj�sh2cs�

2
th3ct

Epx
ih1xih2xih3q
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`

↵2
0µjcjµtct

p↵0 ` 2q

2

ÿ

h1

ÿ

h2

ÿ

h3

�
jh1cj�

2
sh2cs

�
th3ctEpx

ih1xih2xih3q

`

↵2
0µscsµtct

p↵0 ` 2q

2

ÿ

h1

ÿ

h2

ÿ

h3

�2
jh1cj

�
sh2cs�th3ctEpx

ih1xih2xih3q

`

↵2
0µ

2
tct

p↵0 ` 2q

2

ÿ

h1

ÿ

h2

�2
jh1cj

�2
sh2cs

Epx
ih1xih2q

`

↵2
0µ

2
scs

p↵0 ` 2q

2

ÿ

h1

ÿ

h2

�2
jh1cj

�2
th2ct

Epx
ih1xih2q

`

↵2
0µ

2
jcj

p↵0 ` 2q

2

ÿ

h1

ÿ

h2

�2
sh1cs

�2
th2ct

Epx
ih1xih2q.

Together with Er

r

F

p3q
jst

py

i

,�q

cjcscts we finish calculating the variance of n1{2
F

p3q
n,jst

p�q

cjcsct .
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Table B.6: Quantitative trait association simulation with 50 nucleotides and one
Gaussian trait. For MELD the averaged Kullback-Leibler (KL) distance between
estimated component distributions and marginal frequency for each nucleotide are
calculated. The first eight nucleotides with largest averaged KL distance are selected.
For the Bayesian copula factor model, partial correlation coe�cients are calculated.
Nucleotides with 95% credible interval of the partial correlation excluding zero are se-
lected. Nucleotides not in J “ t2, 4, 12, 14, 32, 34, 42, 44u are labeled by an underline
and missing nucleotides are crossed out.

Contamination Data set MELD Q

p2qp�q 1st stage Bayesian copula factor model

0%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 33, 34, 35, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 18, 27,⇢⇢32 , 34, 42, 44u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 22, 27,⇢⇢32 , 34, 35, 42, 44, 45u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 31,⇢⇢32 , 34, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 31,⇢⇢32 , 34, 42, 44u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 12, 14, 20,⇢⇢32 , 34, 40, 42, 44, 46u
9 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 26,⇢⇢32 , 34, 42, 44u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44, 45u

4%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 33, 34, 35, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 18, 27,⇢⇢32 , 34, 42, 44, 45u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 22, 27,⇢⇢32 , 34, 35, 41, 42, 44, 45u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 32, 33, 34, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 31,⇢⇢32 , 34, 42, 44u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 5, 7, 12, 14, 18, 26,⇢⇢32 , 34, 42, 44, 46u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 25, 26,⇢⇢32 , 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 19, 21,⇢⇢32 , 34, 41, 42, 43, 44, 46u
9 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 26,⇢⇢32 , 34, 42, 44u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 12, 14,⇢⇢32 , 34, 42, 44, 45u

10%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 12, 14,⇢⇢32 , 34, 35, 39, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 , 27,⇢⇢32 , 34, 42, 44, 49, 50u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 , 22, 26,⇢⇢32 , 34, 35, 42, 44, 45u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 17, 32, 33, 34, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 31,⇢⇢32 , 34, 42, 44u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12, 14, 26,⇢⇢32 , 34, 42, 44u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 27,⇢⇢32 , 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44, 49u
9 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 26,⇢⇢32 , 34, 36, 42, 44u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 12, 14, 22, 32, 34, 42, 44, 45, 50u

20%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 15, 16,⇢⇢32 , 33, 34, 35, 40, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 9, 11, 12,⇢⇢14 , 20,⇢⇢32 , 34, 42, 44u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 6, 12, 14, 16, 20, 22, 27,⇢⇢32 , 34, 35, 41, 42, 44, 45, 50u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 13, 14, 30, 31, 32, 33, 34, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 15, 18,⇢⇢32 , 34, 42, 44, 49u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 5, 7, 12, 14, 18,⇢⇢32 , 34, 38, 42, 44u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 15, 16,⇢⇢32 , 33, 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t1, 2, 4, 12, 14, 19, 20, 21, 25,⇢⇢32 , 33, 34, 37, 42, 43, 44u
9 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 18, 31,⇢⇢32 , 34, 36, 39, 42, 44u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 12, 14, 19,⇢⇢32 , 34, 42, 44, 45u
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Table B.7: Quantitative trait association simulation with 50 nucleotides and one
Poisson trait. For MELD the averaged Kullback-Leibler (KL) distance between esti-
mated component distributions and marginal frequency for each nucleotide are cal-
culated. The first eight nucleotides with largest averaged KL distance are selected.
For the Bayesian copula factor model, partial correlation coe�cients are calculated.
Nucleotides with 95% posterior interval of the partial correlation excluding zero are
selected. Nucleotides not in J “ t2, 4, 12, 14, 32, 34, 42, 44u are labeled by an under-
line and missing nucleotides are crossed out.

Contamination Data set MELD Q

p2qp�q 1st stage Bayesian copula factor model

0%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 15, 26, 29,⇢⇢32 , 34, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12, 14,⇢⇢32 , 34, 42, 44u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 , 20, 28,⇢⇢32 , 34, 37, 42, 44, 45u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 20,⇢⇢32 , 34, 37, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 27,⇢⇢32 , 34, 42, 44u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 10, 12, 14, 18,⇢⇢32 , 33, 3442, 44, 46, 49u
9 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 10, 12, 14, 21, 25,⇢⇢32 , 34, 39, 41, 42, 44u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44, 49u

4%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 , 15, 26, 29,⇢⇢32 , 33, 34, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 42, 44u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 ,⇢⇢32 , 34, 37, 42, 44u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 20,⇢⇢32 , 34, 37, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 27,⇢⇢32 , 34, 42, 44u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 19,⇢⇢32 , 34, 42, 44u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12, 14,⇢⇢32 , 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 10, 12, 13, 14, 18,⇢⇢32 , 33, 34, 42, 44, 46u
9 t2, 4, 12, 14, 32, 34, 42, 44u t1, 2, 3, 4, 6, 10, 12, 14, 21, 25,⇢⇢32 , 34, 39, 41, 42, 44, 45u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 23,⇢⇢32 , 34, 42, 44, 49u

10%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 , 15, 26,⇢⇢32 , 34, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12, 14, 16, 32, 34, 42, 44u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 20,⇢⇢32 , 34, 37, 42, 44u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 33, 34, 37, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 10, 12, 14, 16, 21,⇢⇢32 , 34, 42, 44u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 6, 12, 14, 22,⇢⇢32 , 34, 42, 44, 49u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12, 14,⇢⇢32 , 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 10, 12, 14, 18,⇢⇢32 , 34, 42, 44, 46u
9 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 6, 10, 12, 14, 17, 21,⇢⇢32 , 34, 42, 44, 48u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 23,⇢⇢32 , 34, 42, 44, 49u

20%

1 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 15, 29,⇢⇢32 , 34, 42, 44u
2 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 7, 12,⇢⇢14 , 32, 34, 35, 42, 44u
3 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12,⇢⇢14 ,⇢⇢32 , 34, 37, 42, 44u
4 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 30,⇢⇢32 , 33, 34, 37, 42, 44u
5 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 16,⇢⇢32 , 34, 40, 42, 44, 47u
6 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14,⇢⇢32 , 34, 36, 42, 44u
7 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 12, 14, 17, 27,⇢⇢32 , 34, 42, 44u
8 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 10, 12, 14, 18, 23,⇢⇢32 , 34, 40, 42, 44, 46, 49u
9 t2, 4, 12, 14, 32, 34, 42, 44u t2, 3, 4, 10, 12, 14, 21,⇢⇢32 , 34, 41, 42, 44u
10 t2, 4, 12, 14, 32, 34, 42, 44u t2, 4, 6, 12, 14, 23,⇢⇢32 , 34, 42, 44, 49u
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